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1Introduction

An important aim of psycholinguistics is to understand how different aspects of

language are implemented in the brain. These processes, including comprehension,

production, and acquisition, are assumed to be computational. For each computation

there can exist many different realizing algorithms and different ways to implement

the algorithm in different computational systems, including the brain (Marr, 1982;

Fodor, 1974). Cognitive models in psycholinguistics are based on empirical data from

behavioral and neuroimaging experiments and use this data to derive an algorithmic

description of language processing (Altmann, 1995). However, because they typically

do not take into account the behavior and limitations of biological circuits, they have

little explanatory power when it comes to understanding how such an algorithm may

be implemented in the brain on the level of neurons, synapses and networks. In this

dissertation, I introduce the notion of neurobiological models that take into account

the biophysical constraints imposed by the neuronal infrastructure and through this

connect cognitive data with the properties of neurons and networks.

1.1 Neurobiological models
One of the aims of a neurobiological model is to reflect the constraints imposed by

known neurophysiology and neurobiological infrastructure. Based on these con-

straints, the model processes information which can then be related to aspects of

cognition, behavioral or cognitive neuroscience data. Such a model is built using

experimentally attained insights about the structure and function of neurons, and

the connectivity of neural networks in the brain. Thus, the aim is to capture relevant

properties of the biological system that implements the information processing. This

allows for the investigation of constraints on processing imposed by the neurobiology
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of the underlying system and provides the basis for a mechanistic understanding of

language processing.

Cognitive and neurobiological models can be of different levels of complexity.

For cognitive models, simplicity is often preferred if this does not sacrifice coverage

and precision in the phenomena the model is attempting to capture. This is typically

not the case for neurobiological models which aim to reflect properties of the under-

lying biological system. Because the biological system consists of large networks of

neurons with interconnecting synapses, supporting a variety of biophysical processes,

neurobiological models can have a large number of independent components and

parameters that determine how they respond to input. However, the characteristics of

the biological system impose constraints on those parameters and therefore determine

the model properties. This means that the values of model parameters are provided

by independent experimental data from fundamental neuroscience. Implementing

such neurobiological models implies, among other things, that the model parameters

also have physical units of measurement that need to fall within physiological bounds.

Another implication is that these models operate physical time that can be directly

related to temporal aspects of behavioral and neuroimaging experiments.

However, the goal of neurobiological modeling is not to reproduce the entire

complexity of the biological system, but rather to understand the system and its

functionally relevant aspects in models of reduced complexity. Hence, the goal of

such models is to reflect relevant characteristics of the neurobiological system, while

at the same time relying on some level of abstraction or reduction of the full details of

the neural system, in particular, at the neuronal level. These reductions are derived

from experimental data and attempt to capture critical properties that have signifi-

cant effects on the behavior of neurons and networks in which they are integrated.

Neurobiological models can then be used to investigate the causal relationship be-

tween biophysical properties and the processing characteristics of neural networks

in an attempt to relate these to cognition. The explicit model descriptions (typically

a large set of coupled differential equations) are implemented as computer simula-

tions which provides complete control and manipulation opportunities of the various

components and parameters of the model. Models with different implementational

features can be compared to establish relationships between these aspects of a model

and its processing characteristics. Since the models reflect properties of the actual

neurobiology, these causal relationships are not only relevant within the models but

also for the functional interpretation of the behavior of actual biological subsystems

of the brain. Ultimately, neurobiological modeling aims to bridge the description
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Figure 1.1.: Image based on silver staining from Ramón y Cajal (around 1905). The capital
letters indicate different morphological neuron classes within the pyramidal neurons (A to G)
and other morphological neuron classes (H to M). Small a indicate the axon protruding out
from each cell. The cortical layer structure is indicated by numbers on the left.
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of brain operations across levels of explanation in order to provide a mechanistic

understanding of higher-level cognitive functions, including language processing.

1.2 Intersecting disciplines
The work presented in this dissertation applies methods from computational neuro-

science and neurophysiology to address questions in psycholinguistics and cognitive

neuroscience. To give a comprehensive introduction to these fields goes beyond the

scope of this chapter. However, I will introduce the findings and concepts that this

dissertation is based on and that are used later to argue for or against particular

design choices in modeling (chapter 2).

1.2.1 Neurophysiology
The brain is a large network of interconnected neurons. To understand how infor-

mation is processed in this system, it is important to understand the properties of

neurons as developed experimentally in the field of neurophysiology.

Single neurons

Biological neurons are complex molecular machines and their experimental study

was initiated in the late 19th century by Ramón y Cajal, see Figure 1.1. Based on

his morphological characterizations, he suggested that the neurons in the brain

are fundamental computational units that communicate with each other. Neurons

typically consist of three basic structural components: (i) a dendritic tree, receiving

and accumulating electric signals, (ii) a soma or cell body with the nucleus and the

axon hillock where action potentials are generated, and (iii) an axon that transmits the

action potentials to synapses, and through chemical transmission via synaptic release

of neurotransmitters, relay signals to other, post-synaptic neurons (Figure 1.2A).

Action potentials are short-lived electrical pulses that are generated and trans-

mitted through a chain reaction of opening of voltage-gated ion channels in the cell

membrane. Action potentials are triggered in the axon hillock when a membrane

threshold is passed. The chain reaction is not locally contained but triggers ion chan-

nel openings in neighboring sections of the axon membrane, leading to an electric

pulse traveling down the axon of the neuron. Action potentials are often called spikes

because they exhibit a rapid (∼1ms) local increase and subsequent decrease of the

membrane potential (as in Figure 1.2B). At the end of axons, the pre-synaptic nerve
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Figure 1.2.: A: Neurophysiological details of a typical neuron. B: Spiking response of three
different electrophysiological neuron classes to a constant input current. Fast spiking neurons
are a subclass of the non-adaptive neurons (J. R. Gibson et al., 1999). C: Post-synaptic current
models for the four major synapse classes, adapted from Gerstner et al. (2014). D: Shapes of
different synapse models described in the main text. Note that the Dirac delta pulse synapse is
zero everywhere except at time 0.
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terminals, there are typically several thousand synapses interconnecting hundreds

or thousands of different post-synaptic neurons. When these synapses are activated

through a spike, they trigger an electrical current in each post-synaptic neuron by

changing the conductance of ligand-gated ion channels embedded in the cellular

membrane of the post-synaptic neuron. These synaptic currents can be long-lived

(up to ∼1 second, Gerstner et al., 2014) and propagate down the dendritic tree to-

wards the soma. In this process, currents from synapses in the dendritic tree are

integrated. Integration is not necessarily a simple, linear addition in time but is typi-

cally branch and distance-dependent and can be non-linear, in particular if there are

active, voltage-dependent ion channels in the dendritic membrane (Koch, 1999). For

example, the stimulation of two adjacent synapses on the same dendritic branch has a

different effect on the neuronal spiking compared to the stimulation of two synapses

on different branches. This effect can be both enhancing and suppressing (Bono &

Clopath, 2017). While synaptic currents can have a long duration, the communication

delay from one cortical neuron to the next is short and typically take less than 10 ms

(Markram et al., 2015; Izhikevich & Edelman, 2008). This includes the time for the

action potential to travel down the axon of the pre-synaptic neuron and the opening

of ligand-gated ion channels in the post-synaptic neuron.

The spiking behavior of neurons can be studied with patch clamp experiments,

where an electric current is directly applied to a neuron in order to generate spikes.

It was discovered that neurons do not simply spike whenever a fixed amount of

current has accumulated (Koch, 1999). Instead, neurons exhibit a range of spiking

behaviors (Connors & Gutnick, 1990; J. R. Gibson et al., 1999). The specific behavior

defines different electrophysiological neuron classes (Izhikevich & Edelman, 2008;

Markram et al., 2015). The three most prominent classes are adaptive, non-adaptive

and bursting neurons. Figure 1.2B shows an example of the spike response to a

constant input current for each of the three classes. Biological neurons often exhibit

history-dependence in that the spike response to input depends on past input, a form

of intrinsic plasticity (Titley et al., 2017). One process realizing intrinsic plasticity

is spike rate adaptation. If a neuron with spike rate adaptation, such as an adaptive

neuron (see Figure 1.2B), is stimulated with a constant current, then, if the current

is strong enough, the neuron will initially fire rapidly but, despite uninterrupted

stimulation, after a few spikes the firing activity will slow down (Connors & Gutnick,

1990). In addition to intrinsic plasticity, there is a range of various other plasticity

mechanisms in neurons.
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Besides the classification of neurons by electrophysiological properties, there

are other ways to distinguish different neuron classes, such as morphology. Neuronal

morphology describes the way dendrites and axons branch out from the soma. An

early example of a morphological study is shown in Figure 1.1. However, the different

classifications can not be directly mapped to each other in that members of one

electrophysiological neuron class can belong to several different morphological classes

and vice versa (Markram et al., 2015). But a reliable functional classification can be

made in terms of excitatory and inhibitory neurons. Whether an axonal signal is

exciting or inhibiting a post-synaptic neuron depends on the type of synapse and,

more precisely, the chemical transmitters released by the pre-synaptic neuron and

the type of ligand-gated ion channels in the post-synaptic membrane. It turns out

that a given neuron only excites or inhibits its post-synaptic neurons, but never a

combination of both. This distinction is also reflected in electrophysiology and the

morphological structure and is referred to as Dale's principle (Strata & Harvey, 1999).

Excitatory neurons are overall more common (∼80 percent) in cortex and they show

less morphological and electrophysiological diversity. The majority are pyramidal

neurons which typically exhibit adaptive spiking behavior (Markram et al., 2015).

Inhibitory neurons are less common (∼20 percent) but are more diverse in terms of

both morphology and electrophysiological behavior. Many are non-adaptive and

exhibit regular spiking behavior (Markram et al., 2015).

Synapses

A synapse translates action potentials from the pre-synaptic neuron into dendritic

currents in the post-synaptic neuron. It consists of a synaptic bulb at the pre-synaptic

neuron which releases neurotransmitters via a narrow synaptic cleft to the post-

synaptic neuron (Figure 1.2A). Synapses can either cause an excitatory or inhibitory

post-synaptic current, both of which can be expressed through several different

synapse types (Markram et al., 2004). However, there are two major classes of

excitatory synapses, AMPA and NMDA synapses, and two major classes of inhibitory

ones, GABAA and GABAB synapses (Gerstner et al., 2014) and these generate different

post-synaptic currents (Figure 1.2C). The functional difference between these groups

is in the temporal dynamics of the post-synaptic current they generate. AMPA

and GABAA synapses generate comparatively brief currents with a duration of

approximately 5 ms while NMDA and GABAB synapses generate more temporally

extended currents that can last up to 1000 ms (Destexhe et al., 1994; Destexhe & Paré,

1999; Gerstner et al., 2014). The biochemical interactions in synapses are complex and
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synapses show a variety of adaptive behaviors (Li et al., 2010). I will discuss models

for synaptic dynamics below but beyond this, there are also molecular interactions at

play that are driven by protein synthesis, transport, and state changes by covalent

modification (for instance kinase-catalyzed phosphorylation) and binding of various

chemical factors (K. C. Martin & Kosik, 2002; Fallon & Taylor, 2013).

Networks of neurons

While a neuron in itself is a complex entity, the network of neurons in the brain

adds another layer of complexity. On the largest scale, the neurons of the cerebral

cortex only inhabit a small sheet of tissue close to the heavily folded surface of the

brain (van Essen et al., 1998). The interior of the brain contains subcortical structures

(e.g., the basal ganglia, thalamus and cerebellum) as well as neuronal fiber tracts

connecting parts of the cortex with each other, and with subcortical structures. Based

on cytoarchitectonic differences (Brodmann, 1909; Strotzer, 2009) and neuroimaging

(van Essen et al., 1998; Geyer et al., 2011), the cortex has been parcellated into areas that

form connected but functionally distinct modules. The connectivity between these

areas, each containing several hundreds of millions of neurons, is broadly consistent

across humans (Sporns et al., 2005; van den Heuvel & Sporns, 2011). The neurons in

cortex are not uniformly distributed but form a layered structure. Figure 1.1 shows a

part of this layered structure. For example, there are many inhibitory neurons close to

the cortical surface, while further away from the surface cortex is mainly populated by

large excitatory pyramidal neurons (Markram et al., 2015). The connectivity between

neurons of different layers seems to induce a functional processing order. Layer

4 serves as input layer from subcortical structures. Information is then forwarded

and processed in the top layers (layers 1-3) and layer 5/6 generates output to other

cortical and subcortical brain regions. Communication between neighboring cortical

regions happens through neurons close to the cortical surface in layer 1 (Feldmeyer &

Sakmann, 2000; Izhikevich & Edelman, 2008).

On the smallest scale, this leaves the connectivity of neurons within one layer.

There is ongoing, active research that characterizes reoccurring motifs and connectiv-

ity patterns that deviate from random connectivity (Sporns & Kötter, 2004; Song et

al., 2005; Perin et al., 2011). However, the neuronal connectivity at this scale seems to

be best described by connection probabilities between neurons that depend on the

classes of the sending and the receiving neuron, their synaptic types, coupled with

morphological properties of the neuron classes involved. These probabilities are also
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mediated by the distance between the two neuronal somata (Reimann et al., 2015;

Markram et al., 2015).

1.2.2 Computational Neuroscience
Computational neuroscience research conducts in silico experiments by simulating

neurons or neuronal populations. These experiments are often limited by the compu-

tational power that is available. This means that, typically, single neurons or small

neuron populations are simulated with high physiological detail while simulations

of larger neuron populations rely on simpler neuron models. Notable exceptions

are various large scale projects including, for example, the human brain projects

(Markram et al., 2015), that expand both the level of detail and size of the simulated

networks.

One feature that is typically omitted in simple neuron models is the spatial

extent of a neuron – the dendritic tree and the physical distance between the synapses

and the soma of the neuron. Instead, neurons are simulated as point neurons, that

is, they have a single compartment that receives synaptic input, integrates the input

and generates spikes to be transmitted to post-synaptic neurons. Such neuron models

can be simulated using only a few coupled differential equations which contrasts

with more complex neuron models that can require tens or hundreds of differential

equations. An example of a simple point neuron model is the leaky integrate-and-fire

(LIF) neuron. An LIF neuron integrates input additively and has a leak process that

causes the membrane potential u to revert to a resting state after a time determined by

the neuron's membrane time constant τm. The behavior of an input-free LIF neuron is

described by τm
du
dt = −u. When the membrane potential reaches a firing threshold, a

spike is emitted and the membrane potential is reset to a reset potential (see Dayan

& Abbott, 2001). This neuronal model does not have long-term dynamics, that is,

when the LIF neuron emits a spike, information about previous input is forgotten

(Gerstner et al., 2014). Neuronal models that can maintain information beyond spike

emission, as is the case for a biological neuron, need at least two dynamical variables.

Two-dimensional neuron models use similar spiking and integration mechanisms as

the LIF neuron but have additional dynamical variables that maintain information

beyond spike emission. This can be, for example, an adaptive current or an adaptive

threshold. Examples of those neurons models are the FitzHugh–Nagumo model

(FitzHugh, 1961), the Izhikevich model (Izhikevich, 2003) and the AdEx model (Brette

& Gerstner, 2005).
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These phenomenological models approximate the spiking behavior of neurons

instead of the underlying biophysical processes. However, it is possible to model the

processes that give rise to a spiking behavior directly, as was done in the Hodgkin-

Huxley model (Hodgkin & Huxley, 1952). It uses a set of differential equations that

describe ion channel interactions which can model spike generation without an addi-

tional spike mechanism. However, through theoretical analysis, phenomenological

two-dimensional neuron models, such as the AdEx neuron, can be derived from the

biophysical Hodgkin-Huxley model using separation of time scales (Brette & Gerst-

ner, 2005; Gerstner et al., 2014; Brette, 2015b). This means these phenomenological

models capture properties of the neuronal behavior that can be directly derived from

the Hodgkin-Huxley model. Furthermore, despite the added biophysical details

in the Hodgkin-Huxley model, the AdEx model reflects the neuronal spiking and

adaptation behavior of real cortical neurons most accurately and predicts the spiking

response to input the best (Brette, 2015b; Jolivet et al., 2008).

Synapse models

Within synapses, there are a host of biochemical interactions that control the conduc-

tivity of a synapse on a range of different time scales. In computational models, these

processes are accounted for by the synapse model. Due to the complexity of synaptic

dynamics, detailed synapse models can be computationally expensive and there are a

number of models with different levels of detail.

When a spike excites a synapse, it generates a conductance response and a

corresponding post-synaptic current, the amplitude of which depends on the strength

of the synapse, the synaptic weight. The post-synaptic current can either be modeled

directly using a current-based model or indirectly using a conductance-based model.

The latter is biophysically more detailed as it captures the change in synaptic conduc-

tance through ligand-gated ion channel openings rather than the phenomenological

effect of the resulting current. It also captures the fact that post-synaptic currents

are dependent on the membrane voltage by including different reversal potentials

for inhibitory and excitatory synapses. In current-based models, the temporal evo-

lution of the post-synaptic currents can be modeled with different levels of detail

(see Figure 1.2D). The simplest model is a delta pulse current that, when a spike

is received, instantaneously increases the membrane potential of the post-synaptic

neuron by a value depending on the synaptic strength. This model does not gener-

ate temporally extended currents, that is, currents only influence the post-synaptic

neuron at the moment of the spike arrival. A more complex model is the exponential
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post-synaptic current, with an initial current depending on the synaptic strength

which then exponentially decays over time. It is essentially a Dirac delta convolved

with an exponentially decaying synaptic kernel such that the post-synaptic current is

temporally extended depending on the decay time constant of the exponential kernel.

Further refinements of the shape of the post-synaptic current are the alpha synapse

and the double-exponential synapse. In both models, the synaptic current decays

exponentially. However, currents do not reach their maximum amplitude at the time

of the spike arrival but after a short rise-time. This allows spikes to have a delayed

effect on post-synaptic neurons (Dayan & Abbott, 2001).

Synapses also exhibit adaptive properties that change the synaptic weights

depending on past input. These mechanisms include short-term plasticity (STP)

(Markram et al., 1998) and spike-time dependent plasticity (STDP) (Markram et al.,

1997; Kempter et al., 1999) which can work in parallel with longer-term consolidation

mechanisms (Frey & Morris, 1997; Zenke et al., 2015). STDP is an example of Hebbian

plasticity that implements the principle “fire together, wire together”. When Hebbian

plasticity is added to a network, synapses and thus network activity have a tendency

to become dynamically unstable in that Hebbian plasticity tends to increase strong

synapses and depress weak ones. This drives synapses to bottom out and can lead to

a bimodal distribution of synaptic strengths (Morrison et al., 2008; Carlson et al., 2013

and already Rochester et al., 1956). This type of bimodal distribution is not what has

been observed in brain networks (Turrigiano et al., 1998; Song et al., 2005; Bartol et al.,

2015) and there are several proposals to address this problem (Morrison et al., 2008;

Kumar et al., 2010; Zenke et al., 2015) but so far none of them has resolved the issue

of Hebbian instability conclusively.

Network dynamics

Another feature observed in mammalian brains is that large-scale neuronal spike

patterns have statistical properties similar to spikes generated by a (random) Poisson

process (Shadlen & Newsome, 1998) where the inter-spike-intervals will approxi-

mately follow an exponential distribution. This spike pattern activity in a network is

referred to as asynchronous irregular behavior and provides a large dynamic range

that can be used to represent information (Duarte & Morrison, 2014). To achieve

this state, a local balance of inhibitory and excitatory synaptic input to neurons is

crucial (van Vreeswijk & Sompolinsky, 1996; Tsodyks & Sejnowski, 1995). In a simple

implementation, this can be approximated globally by balancing the total synaptic

strength of inhibition and excitation in a network.
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1.2.3 Models in psycholinguistics
In psycholinguistics, models have been used to describe different aspects of how

humans comprehend, produce and acquire language. Models of language compre-

hension describe the cognitive processes at different levels of granularity. Some

models address word identification and lexical access (Cohort model, Marslen-Wilson

& Tyler, 1980; TRACE model, McClelland & Elman, 1986) while others investigate

sentence-level interpretation assuming that words have already been identified cor-

rectly (Unification model, Vosse & Kempen, 2000; Sentence Gestalt model, St. John

& McClelland, 1990). Different models of language processing can rely on different

sources of experimental data. While all, in one way or another, use data from behav-

ioral experiments of humans processing words or sentences, some conceptual models

also relate to neuroimaging data of language processing (MUC model, Hagoort, 2005;

Dual Stream model, Hickok & Poeppel, 2007). Below, I discuss previous language

models that are of particular relevance for this dissertation.

MUC model

This dissertation is conceptually operating within the Memory, Unification, Control

(MUC) model (Hagoort, 2005). The MUC model bridges from a psycholinguistically

motivated analysis of language processing to evidence from neuroimaging experi-

ments. It postulates three functional subcomponents of language processing. The

memory module, or mental lexicon, is a long-term storage of words and their as-

sociated phonological, semantic and syntactic features which are retrieved during

comprehension. Neurobiologically, it is located in regions of the temporal and the

parietal cortex (Angular gyrus). It also stores information such as word forms, mor-

phological information and syntactic templates representing, for instance, nouns,

verbs, and adjectives (Hagoort, 2003, 2005, 2013). The unification module integrates

information retrieved from the mental lexicon and generates larger structures repre-

senting the syntax and semantics of multi-word utterances. It is located in frontal

areas around Broca's region and the distribution of activation during unification is

dependent on the type of information unification is operating on. Phonological, syn-

tactic, and semantic unification happens in a gradient structure including Brodmann

areas BA 44, 45, and 47 (Hagoort, 2013). Finally, the control module exerts higher-level

cognitive control. It is involved in, for example, target language selection, turn-taking,

joint action, and generally larger-scale discourse contexts (Hagoort, 2013; Meyer et al.,
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2007). It is located in the dorsolateral prefrontal cortex and mid-line frontal structures

(Hagoort, 2013).

Unification is based on a computational model of parsing where each word in

the mental lexicon is associated with a set of structural frames (Vosse & Kempen, 2000).

These frames can be represented as treelets defining suitable linguistic environments

for each word. They consist of a root node, functional nodes (such as subject, direct

object, or determiner) and leaf nodes. Each treelet has a head, which is the lexical item

it corresponds to, marking its position within the treelet. When perceiving a multi-

word utterance, the unification operation binds/unifies the root node of a treelet

retrieved from the mental lexicon to an open leaf node of an already constructed,

partial parse of previously received treelets with the identical label while ensuring that

number, gender, case, inflection etc. agree. This leads to a tree structure representing

sentence-level structure and meaning (Hagoort, 2003). Unification operations resolve

syntactic as well as semantic constraints (Jackendoff, 2002, 2007; Hagoort, 2013).

Connectionist models

Connectionist models are computational models in psycholinguistics that use artifi-

cial neural networks which process information through spreading activation rather

than the explicit manipulation of variables and symbols (Frank et al., 2019). An

artificial neural network typically consists of a set of simple processing units that

are interconnected. An external stimulus can induce activation in the nodes that

propagates through the network via synaptic connections. The response of such

a network is determined by the activation of a set of output nodes. Since their in-

troduction (Rumelhart et al., 1986; Dell, 1986; Elman, 1990; St. John & McClelland,

1990), connectionist models have been very influential in the field of psycholinguistic

modeling (Seidenberg, 1993; Christiansen & Chater, 2001; Frank et al., 2019). What

distinguishes them from symbolic models is that they were inspired by structural

aspects of biological neural networks. They were built on the observation that the

brain is not composed of a single CPU, a dedicated addressable memory, and other

specialized components but rather consists of a large number of similar, intercon-

nected processing units. In combination, these can perform complex operations in

a distributed fashion, which has some similarity to the way brain networks process

information. In this sense, connectionist models have some common roots and share

some characteristics with neurobiological models. However, connectionist models do

not go beyond implementing decentralized processing and do not model neuronal

activity and synaptic dynamics as biophysical processes in real physical time. Never-
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theless, by imitating structural characteristics of the brain, connectionist models were

useful to model behavioral data in psycholinguistics, including aspects of language

acquisition, adult processing, and impairment (Plunkett & Marchman, 1991; Chris-

tiansen et al., 1998; Joanisse & Seidenberg, 1999; Chang et al., 2006; Chang, 2009; Fitz

& Chang, 2008, 2017).

1.3 Overview of the dissertation
The goal of this dissertation is to build and evaluate a neurobiological model of

language processing. In chapter 2, I describe one instance of such a model, the NBL

model. Based on the background provided above, I will motivate the model choices,

pertaining to the neuron and synapse model, as well as other components such as

the encoder and readout. Chapter 2 also contains the general methods describing

the underlying mathematics for the simulations, and the English-like language that

is used to stimulate the model. The remainder of the dissertation can be split into

two parts. Chapters 3 and 4 are dedicated to investigating the NBL model and to

understanding how model parameters affect memory and processing, while chapters

5 and 6 evaluate the model in relation to human processing characteristics. Figure

1.3 shows the NBL model and which aspects of the model are investigated in each

chapter.

In chapter 3, I compare different ways to encode information into the network

and how these different encoding schemes influence information processing. I com-

pare encodings that are based on spike rates, the precise timing of spikes, or a direct

current injection. I test if these encodings require a stimulus-specific input projection,

where only a dedicated subset of neurons is targeted by each stimulus, or if they can

function without it. I focus on processing properties that are important for language

comprehension and other cognitive functions: input separation, memory retrieval,

and integration. I find that the direct current and temporal encodings perform similar

while rate-based encoding shows lower accuracy. In particular, rate encoding does

not perform well without a stimulus-specific projection. Then, I test to what extent

noise affects processing and find that all three encoding schemes are tolerant to noise

with a stimulus-specific projection while without it, temporal encoding performs best

under noise.

In chapter 4, I investigate how network features influence the memory char-

acteristics of the NBL model. I manipulate connectivity, neuronal adaptation, and

the duration of synaptic currents to determine how they affect processing memory. I
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Figure 1.3.: Visual overview of the dissertation. The NBL model is illustrated in the center
with its three components encoder (green), network (blue) and readout (red). The surrounding
boxes indicate which parts of the model are investigated in the different chapters.
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compare recurrent and feed-forward networks with different connection densities

and find that processing memory in the NBL model is not supported by recurrent

connectivity. Furthermore, I compare networks with and without spike rate adapta-

tion and different synaptic currents. I find that, generally, long time scales in these

components enhance memory. Both of these mechanisms do not rely on ongoing

spike interaction. That is, they serve as an activity-silent processing memory.

In chapter 5, I use the NBL model with the parameters determined in the

previous chapters to processes structured sequences. I investigate if it provides a

suitable substrate to accomplish a semantic analysis of sentences. I find that the model

readout can be estimated on a small sample of the input language and still correctly

generalizes to novel sentences. It integrates new information and retains relevant

old information to processes words in the context in which they occur. The model

integrates both syntactic and semantic constraints. Furthermore, I show that the NBL

model can infer the semantic role of novel words from context.

In chapter 6, I investigate the binding of words to semantic roles using a

question-answering protocol. That is, after presenting a sentence, I query the model

with a semantic role, such as the agent or the patient of an action, and find that

the nouns that correspond to these roles can be decoded from the network activity.

Using parallel readouts, I demonstrate that the network maintains different kinds of

information concurrently, such as noun and verb identity, but also which adjective is

associated with which noun. In addition, the model maintains the event semantics of

a sentence. I also find that this information is sufficient to resolve binding relations for

nouns that occur repeatedly in a sentence – so-called problem-of-2 sentences. Finally,

I explore the state-space dynamics of the NBL model during processing to investigate

how it stores binding information.

Chapter 7 discusses how the results of this dissertation exploit and illustrate the

benefits of neurobiological models. Furthermore, it outlines possible extensions of

this research and how using neurobiological models may facilitate scientific progress

and improve our understanding of the language system.
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2The NBL model, a
neurobiological model of
sentence processing

In this chapter, I describe the NBL model that was used in all simulations in this

dissertation. First, I describe the model structure, introduce the main components

and argue for the modeling choices I made. Second, I give a description of the

implementation details in the general methods section including the underlying

mathematical formalism and the model parameters. Third, I describe the English-

like language I used to evaluate the model. And finally, I briefly introduce some

mathematical terms and concepts that I rely on throughout.

2.1 The NBL model

2.1.1 The neuronal and network model
Neurobiological models and their processing characteristics are important tools in

the attempt to understand how various cognitive processes arise from the underlying

neural infrastructure. Therefore, I built a model that captures a number of important

biological features. The defining feature of a neural network is that it consists of many

interconnected processing units that in biology communicate through spikes. Thus, I

use networks of models of spiking neurons as a basis for the neurobiological model.

The communication between biological neurons is fast but can cause long-lasting

effects on the post-synaptic neurons due to temporally extended synaptic currents.

I model these interactions with current-based exponential synapses. The currents
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have instantaneous rise time and are initiated immediately after receiving a spike and

then decay exponentially over tens or hundreds of milliseconds (see Figure 1.2D). An

important aspect of biological neurons is that they exhibit intrinsic plasticity. Thus,

information can be maintained beyond spike generation for a hundred milliseconds

and longer. One intrinsic plasticity mechanism is spike rate adaptation, which is

well described by the AdEx model (Brette & Gerstner, 2005). The AdEx neuron is a

two-dimensional spiking neuron model that models spike rate adaptation through an

adaptive current. It reproduces the spiking behavior of neurons more reliably than

other more complex models (Brette, 2015b). The equations and parameters defining

the neuron and synapse elements are given in section 2.2.1. The functional effects of

different parameters values are investigated in chapter 4.

In neurobiology, the most prominent difference between neuron classes is the

distinction between excitatory and inhibitory neurons (Strata & Harvey, 1999). In the

simulated networks, this distinction is reflected by splitting neurons into two groups

that then only generate excitatory or inhibitory synaptic currents in post-synaptic

neurons, respectively. In cortex, there are more excitatory than inhibitory neurons.

In mammalian cortical layer 2/3, which is relevant for processing (Izhikevich &

Edelman, 2008), this ratio is approximately four to one (Markram et al., 2015). I use

the same ratio in the simulated network: one fifth of the neurons were inhibitory.

To reach a global balance between excitation and inhibition, the synaptic weights

of inhibitory neurons were scaled up by five compared to the excitatory synapses.

Within cortical layers, connectivity appears random at various spatial scales, with

the connection probability between two neurons being influenced by neuron class

and distance (Reimann et al., 2015). Due to their small size, the networks modeled

here can be compared to a local network within one cortical layer. I therefore use a

random connectivity matrix between neurons. Furthermore, since neuron classes are

not distinguished beyond excitatory/inhibitory, the connection probability between

two neurons is always the same.

These represent minimal neurobiological characteristics of spiking networks and

do not include many important aspects of neurobiology that can be simulated with

known computational models. More heterogeneous neurons, structured connectivity

profiles that differentiate by neuron class, and synaptic dynamics are some of the

areas where the neurobiological realism of the model can be improved. However,

research on all of these topics and how different aspects of them are interacting is

still ongoing. The focus of this dissertation is to establish neurobiological models
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Figure 2.1.: Illustration of model setup. The model components (left) are shown, together
with the activity of each component in a simulation (right) during semantic processing (see
chapter 4). The encoder maps sentence-like structured sequences into spike patterns that excite
the network. The network processes the delivered input and the readout extracts processed
information from the network. In the example task, this information is used to assign semantic
roles to the current noun phrase. During the presentation of the verb, ACTION is assigned as
semantic role.

of language processing and showcase their potential utility. Nevertheless, greater

neurobiological realism is an important future research trajectory (see chapter 7).

2.1.2 Model components
To investigate processing in a spiking neural network, there needs to be some means

to encode input, some way to measure the result of the processing, and some long-

term learning or adaptation in order to accomplish a particular task. Therefore the

NBL model contains two components besides the neural network (Figure 2.1): the

encoder, that stimulates the network in a suitable manner with sequential word input,

and the readout, that serves as an output device which can be used to identify the

solution to a processing task. Neurobiologically, long-term storage and learning

are associated with synaptic connections between neurons that dynamically change

depending on the input (Koch, 1999; Takeuchi et al., 2014). The network in the NBL
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model does not have dynamic synapses and can not aggregate information over

a whole training set containing tens of thousands of stimuli. Therefore, a readout

is calibrated/estimated to solve a specific task by identifying which aspects of the

network activity are important in solving this task.

2.1.3 Encoder
During processing, the NBL model should be in a neurobiologically plausible state

and it should be stimulated in a neurobiologically plausible way. Therefore, I designed

the encoder such that it adheres to properties found in cortical spiking networks, i.e., it

encodes information in spikes with neurobiologically plausible spike rates (Markram

et al., 2015) which is injected in a distributed fashion that resembles spike patterns

generated by a Poisson process (Shadlen & Newsome, 1998). I investigate the effect

of different encoding schemes on processing and discuss different proposals for the

neural code in chapter 3. Based on these results, I use a scheme with a temporal code

where information is encoded solely through the precise timing of the input spikes.

This spike-based encoding corresponds to the way cortical neurons communicate

and delivers good performance on fundamental tasks such as input separability and

memory retrieval (see chapter 3). Furthermore, the encoding scheme does not use a

spatial code where different input stimuli are projected to different neurons. Also, in

contrast to a rate-based code, the firing rates in the temporal code were kept constant.

This encoding represents a minimalist version of a temporal code that does not rely on

additional assumptions. Similarly, I use a featureless encoding where the input does

not contain information beyond word identity. In other words, the word encodings

have no internal structure, such as syntactic or semantic features, and this serves as an

illustration of what is possible without specific assumptions about feature structure.

2.1.4 Readout
To characterize the output of a processing task, I use the readout component. It reads

the network state and uses it to determine a solution to a given task. The readout

here is a calibrated measurement device that serves as a stand-in for a down-stream

neurobiological system, with adaptive characteristics that in reality would readout

the activity of the NBL model network. It identifies the aspects of neural activity

that are relevant to solve a given task and extracts the corresponding information via

neuronal activity. This allows for testing whether the relevant information to solve a

task is available in the network or not. If the NBL model as a whole can not solve a
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task, the relevant information is not provided by the neural network. Conversely, if it

can, then the relevant information is available in the state of the network and could

therefore also be accessed by downstream networks.

The readout is simple and limited to linear operations on the momentary state

of the network. Hence, any processing step that requires memory or non-linear

operations on the input is not performed by the readout. Therefore, if the NBL

model can solve a task requiring processing memory or non-linear integration, the

relevant processing is performed by the neural network. Since the readout is used

as a measurement device and the readout weights do not affect processing in the

network itself, several readouts can be attached in parallel without interfering with

the network, or each other, each reading out different types of information in different

tasks. Thus, the information in a single network can be used to solve several tasks in

parallel and in this sense the NBL model is accomplishing parallel processing related

to various computational needs. I use this feature, for example, in chapter 6, where

I use parallel readouts to retrieve different aspects of each sentence through a set

of readouts operating on the same network state. This includes word identities of

different sentence constituents and the event semantics of the sentence.

Readout from neuronal state, not spikes

To determine an output, the readout is measuring the neuronal states, i.e., the mo-

mentary membrane potential u and adaptive current w of each neuron (see Figure

2.2). This is somewhat unusual in computational neuroscience where a readout often

uses a temporal filter applied to the spikes generated by the neurons. This is often

done since biological neurons communicate through spikes. Therefore, such is the

reasoning, the information contained in the neuronal state is not necessarily accessible

to downstream networks. Instead, I apply the readout directly on the neuronal state

for two reasons: First, the information extracted with the readout can indeed be made

available to a downstream readout network. This can be done for a network and any

connectivity structure by copying the neurons and all of their incoming spikes to the

readout network as illustrated in Figure 2.3. There we can see that, instead of the

neuronal spikes generated by the neurons targeted by the readout (blue and orange),

the spikes arriving at the targeted neurons are transferred to the readout network.

This reproduces the state of the neurons that the NBL readout has access to in a hypo-

thetical readout network. Thus, the information that is available to the readout (e.g.,

membrane state) is also accessible by downstream networks even though neurons

only communicate through spikes.
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Figure 2.2.: Interaction of different neuronal and network state variables in the NBL model.
The input spikes Sinp generate synaptic currents in the receiving neurons Isyn that change the
membrane potential u. The membrane potential of each neuron interacts with the adaptive
current w of the neuron. When reaching the firing threshold, the membrane potential elicits
spikes S which, in turn, generate synaptic currents in the post-synaptic neurons Isyn. These, in
turn, change the membrane potentials of the post-synaptic neurons and so on. Each of the state
variables u, w and Isyn influences their own future state, indicated by the looped arrows.

The second reason why I read out from the neuronal state relates to the question

of how a readout based on spikes is implemented. Spikes are short-lived and are

modeled as events without temporal extension. Thus, the integration of several spikes

requires some convolution kernel, a temporal filter that extends the effect of a single

spiking event over time. This generates a time-continuous signal that can then be

used by a readout. However, what properties should this temporal filter have? If,

for example, it would have a long time constant, it could retain information longer

than the network itself. The ideal temporal filter is one that does not omit or add

information to what is currently available in the network. The best filter that satisfies

these conditions is a neuron itself (van den Broek et al., 2018). A neuron receives

spikes and represents them in its neuronal state as a time-continuous signal, i.e., it has

the properties of a temporal filter. Directly reading out the neuronal states obviates

the need for a spike filter with arbitrary time constant. In addition, there is also

no need to introduce extra readout parameters that may require testing and tuning.

Therefore, neuronal states are read out directly from the NBL model without loss of

generality.

Biological plausibility of the readout

One of the limitations of learning in biological networks is that information is only

available locally, either within the neuron itself or through communication with its

neighbors. The estimation algorithm to determine the readout in the NBL model,
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Figure 2.3.: Illustration how the information available to the readout can be transmitted
to a readout network. The left panel shows how the readout is accessing the membrane
potentials of two neurons in the NBL model. The right panel shows how incoming spikes
to the blue/orange neurons are transferred to a downstream readout network such that the
membrane activity of both neurons is recreated in this readout network. Hence, all information
that the readout in the NBL model has access to is also available to a downstream network.

linear regression, uses non-local information. It has access to the state of all neurons at

once and hence to the global network state. However, after training, the readout only

uses linear operations to extract information from the network, i.e., information from

different neurons is only scaled and added. This can plausibly be done by downstream

readout networks as well. Furthermore, parallel readouts are also implemented in

neurobiology with multiple downstream networks connecting to different subsets of

neurons in an upstream network. Each downstream network can thus extract relevant

information for its needs without interfering with other readouts.

2.1.5 Scientific embedding

Memory, Unification, Control

Conceptually, I work within the framework of the Memory, Unification & Control

model (Hagoort, 2005) and the NBL model aims to implement aspects of unification.

The encoder provides information that would be stored in long-term memory, the

mental lexicon. This information is retrieved and delivered as spike patterns to the

unification network. To base the model on as few assumptions as possible, these spike

patterns do not contain information about lexical features of the words presented,

including syntax and semantics. Instead, the retrieved word representations only

encode word identity. The network in the NBL model is stimulated by the input
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which it then processes in the context of previous input. If the readout can identify

sentence-level properties, e.g., semantic relations, based on the network state, this

shows that the network can integrate information provided by the encoder to generate

larger conceptual structures, i.e., it performs unification. If the readout is successful

this implies that the result of unification can be delivered to downstream networks.

These could further process the information to perform more complex cognitive

tasks involving, for example, the larger linguistic context, or reasoning based on the

sentence-level interpretation.

Reservoir computing

The design of the NBL model is similar to reservoir computing models with spiking

neurons. Reservoir computing (Lukoševičius & Jaeger, 2009) describes a class of

neural architectures that consist of a randomly and statically connected network (the

reservoir), an input, and a trained linear output. There are several different network

types that fall within the class of reservoir computing. These include the liquid state

machine (Maass et al., 2002) and echo state networks (Jaeger, 2001) that differ from

each other in terms of the neuron model they used. In echo state networks, the aim

was to build a system that reproduces the behavior of an irregular (chaotic) oscillator.

To do this, the network was trained to predict the state n+1 of a chaotic system when

given state n. Then, the input and output nodes were connected such that the network

became a closed system, using non-spiking computational units.

The NBL model is more similar to a liquid state machine that uses spiking

neurons and has the purpose to perform computations on an input presented to

the network. However, the NBL model relies on more complex two-dimensional,

adaptive neurons which results in more complex network dynamics. Research into

reservoir computing as a machine learning tool illustrates the computational potential

of the NBL model (Lukoševičius et al., 2012). However, in the current work, I have a

different explanatory goal: I am using a readout on the states of a spiking network to

investigate neuronal computation and the functional role of different parameters and

neurobiological features, rather than as a machine learning tool.
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2.2 General Methods

2.2.1 Neural network

Neuron model

In my network simulations I used the adaptive exponential neuron model (AdEx; Brette &

Gerstner, 2005) which is based on neurophysiological experiments to mimic the indi-

vidual neuron response to input current stimulation. The AdEx is a two-dimensional

neuron, where one dynamical variable models the membrane potential u while the

other, w, is a spike-triggered current. This current is used to model adaptive pro-

cesses in the neuron, for example spike rate adaptation. The behavior near the spike

threshold is governed by an exponential term which fits biological neurons better

than models with a linear behavior near the threshold (Gerstner et al., 2014).

In my implementation, the dynamics of the neuron model is defined by the

following two equations:

Cm
d
dt

u(t) = −gL(u(t)− EL) + gL∆ exp
(

u(t)−Vt

∆t

)
− w(t) + I(t)

τw
d
dt

w(t) = a(u(t)− EL)− w(t)

Both dynamical variables have their own decay time constants. For the membrane

potential u this is τu = Cm
gL

, with Cm being the neuron capacitance and gL the leak

conductance. For the adaptive current w this time constant is τw. Other parameters

are the reversal potential EL, the spike threshold Vt and a which determines the

interaction between u and w. ∆ governs the influence of the exponential term, see

Table 2.1 for parameter values.

When u surpasses the peak potential Vp, a spike is triggered. Vp has to be signif-

icantly higher than Vt, however, the exact value is not critical. Crossing Vp indicates

Figure 2.4.: Temporal evolution of dynamical variables in the AdEx neuron. Illustration
how the membrane potential u and the adaptive current w change due to a constant step
current as input. The black line indicates when the input current is active. Due to the adaptive
current, the spike rate decreases over time despite the constant stimulation.
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Name Value Description
Cm 0.45 nF membrane capacitance
gL 25.0 nΩ−1 leak conductance
∆ 2.0 mV rise slope factor, influence of expo-

nential term
E −70.6 mV leak reversal
Vt −50.4 mV threshold potential
Vp 20.0 mV peak potential of exponential regime
Vr −70.6 mV reset voltage
a 4.0 nΩ−1 sub-threshold adaptation conduc-

tance
b 80.5 pA increment of w on spike emission
τw chapter dependent adaptation time constant
τm 18.0 ms membrane time constant

Table 2.1.: Parameters used for AdEx neuron model.

that the membrane potential has entered the exponential regime of the dynamical

system described by the model equations. So, Vp does not have a neurophysiological

interpretation and changing it only shifts spike positions by fractions of a millisecond

(Clopath et al., 2007). At the firing time t f , the neuron parameters are updated to

model the spiking process:

u(t f )← Vr,

w(t f )← w(t f ) + b.

Vr is the reset potential and b determines how strong the adaptive current w is

increased by a spike. The main parameters that determine the firing characteristics of

the neuron are a, b, Vr and τw (Naud et al., 2008). By manipulating them, the AdEx

model can mimic different electrophysiological classes of neurons. I used parameters

similar to the original publication (Brette & Gerstner, 2005) that showed spike rate

adaptation, as do the majority of excitatory cortical neurons (Markram et al., 2015).

This process is depicted in Figure 2.4.

Synapse model

To model a synapse, I simulated an exponentially decaying current which was in-

creased instantaneously when the pre-synaptic neuron spiked, for both excitation

and inhibition of the post-synaptic neuron. The dynamical variable Ii(t) represents

the momentary sum of all synaptic currents to neuron i. Ii(t) was convolved with a

Dirac delta function (see glossary, section 2.4) corresponding to each spike time. In
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other words, the current Ii(t) was increased by a fixed amount for every pre-synaptic

spike onto neuron i. The amount was determined by the synaptic weight wij from the

pre-synaptic neuron j to the post-synaptic neuron i. Formally, it was defined by the

differential equation:

τsyn
d
dt

Ii(t) =

(
−Ii(t) + ∑

j
wijSj(t)

)
· Iapp

where τsyn was the synaptic time constant and Sj(t) a series of delta functions repre-

senting the spike train generated by neuron j. Iapp was a global scaling parameter to

tune the network activity (see next section). In chapter 4, I investigate how different

values for τsyn influenced the memory characteristics of the network. There was no

synaptic plasticity in the NBL model.

Network connectivity

The network consisted of 1000 neurons, 200 of which were inhibitory and 800 ex-

citatory. A synapse between two neurons was realized with a probability of ρc. I

investigate the effect of different values for ρc in chapter 4. The strength of the

synaptic connections that were realized was defined by a unit-less scaling weight.

The weights of the excitatory synapses were independently drawn from a uniform

distribution between 0 and 0.2 while inhibitory synapses were independently drawn

from a uniform distribution between 0 and 1. The ratio of inhibition and excitation

reflected the distribution in cortex and approximates the ratio in a mammalian layer

2/3 network (Markram et al., 2015). The relative strength of inhibitory and excitatory

weights provided an approximate balance between excitation and inhibition (Tsodyks

& Sejnowski, 1995).

Numerical simulation

I used the forward Euler scheme (see glossary, section 2.4) with a time step of 1 ms

to integrate the differential equations defining the neuron model and simulate the

network. Generally, simulations were repeated ten times with different random seeds

which determined the network connectivity, input spike patterns, and the training

and test sets. I refer to simulations with different seeds as network subjects.

Before the start of each simulation, a scaling parameter Iapp was tuned iteratively

until the network displayed a mean spike rate of ftunen across neurons on the first

500 stimuli of the input set within a 10% margin of the tuning rate ftunen . I test how

2.2.1 Neural network 31



different values of ftunen change the network properties in chapter 4. There was no

background activity stimulating the network. Figure 2.5 shows typical evoked activity

during input presentation. Except for chapter 3, the network state was reset before

each input sentence since the focus of this work was on single-sentence processing.

The state to which the network reset was determined at the end of the rate tuning

procedure described above. The reset state included the dynamic variables u, w and I

for each neuron and the network was restored to the saved values between sentences.

To investigate discourse processing, one would disable reset to allow information

flow across sentence boundaries.

2.2.2 Input encoding
The input encoder assigned a fixed, randomly generated spike pattern for each word

to stimulate the network. The patterns consisted of different instantiations of 20 Hz

Poisson processes on 100 input channels. Each of the channels was connected to a

fixed set of 5% randomly chosen excitatory neurons in the network and was active

for every word. Thus, word information was exclusively encoded in the timing of

spikes on the input channels. When words were repeated they were represented by

the same temporal spike pattern (frozen noise). The input weights were excitatory

and chosen from a uniform distribution between 0 and 0.2. There was also a global

input weight scaling parameter Iinp which was tuned such that the input drove a

spike rate of 2.5 Hz, averaged over all neurons when all network-internal connections

were set to zero. This ensured that the input stimulation had a consistent strength

across simulations, and was independent of the strength of the internal, recurrent

connections.

The duration of each stimulus was determined by multiplying the orthographic

length of the word with 50 ms. For example, the longest word was 9 letters long, rep-

resented by a spike pattern of 450 ms in duration. The shortest word was represented

by a 50 ms spike pattern. The mean duration over all 212 different words used in the

language was 250 ms with a standard deviation of 70 ms. The words were delivered

sequentially without pause (Figure 2.6). The randomly chosen spike patterns, the

constant spike rate per input channel and the non-localist projection to the network

in combination have the effect that there were no clear word boundaries in the input

patterns. The input was indistinguishable from continuously generated Poisson noise

with a rate of 20 Hz and information was provided solely through the unique spike

pattern that characterized each word in the language.
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Figure 2.5.: Spike raster plot of the network. Activity in the model while receiving input
with the network parameters from section 4.3.4. The input patterns that were used are shown
in Figure 2.6.

the cat -s were chase -ing them .

Figure 2.6.: Spike patterns for encoding of a sentence. Example of how a sentence is encoded
as a spike pattern on 100 input channels. The colored patches indicate word boundaries in the
spike pattern. There was no change in spike frequency or the number of activated neurons at
word boundaries. The duration of each word pattern corresponded to the orthographic length
of the word with 50 ms per letter.
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2.2.3 Readout
The computational tasks and target outputs varied across chapters. There is (delayed)

stimulus identification in chapter 3, semantic role assignment in chapters 4 and 5

and query answering. In chapter 6, all of these tasks are performed in parallel using

different readouts. To produce outputs, I trained linear readouts on the network

activity. I used static networks without synaptic plasticity and only the connections

of the network to the readout were task specific. The readout weights were estimated

using ordinary least squares regression (glossary, section 2.4) on the neuronal state

variables u and w. Both variables were sampled every 5 ms, standardized per neuron

to a mean of 0 and standard deviation of 1, and then averaged by stimulus. That is,

there was one data point per neuron and state variable for each stimulus.

Each task had several possible readout values (e.g., different semantic roles)

and I used a winner-takes-all approach. Thus, the readout value with the highest

activation given the stimulus-averaged network state was selected. This determined

the output assigned on the current input, e.g., the semantic role that was assigned to

a word. The tasks varied in terms of difficulty. Because of that, the size of the training

set ntrain, i.e., the number of words used to estimate the readout weights, and the size

of the test set ntest, i.e., the number of words used to determine the performance of the

readout, were chosen differently in each chapter and are reported in the methods.

Random classifier

As a baseline to compare the performance of the NBL model against, I used a random

classifier in chapters 4, 5 and 6. I took the target output for the test set, randomly

permuted the order to generate a random assignment, and then computed its perfor-

mance. In this way, the distribution of the different output values over the test set

was maintained. Thus, if some target outputs were more frequent than others, this

was reflected in higher performance of the random classifier compared to when all

targets were equally likely. I used this random baseline to compute a conservative

kappa score for multinomial classification to assess the different models (glossary,

section 2.4).

Back-off-N-gram model

In chapter 4, I compared the NBL model to a back-off N-gram model as a benchmark.

It first collects all possible N-grams from the training set, i.e., all chunks of N con-

tiguous words, for all N up to sentence length. For example, the sentence “cats chase
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dogs” would be chunked into the set {“cats”, “chase”, “dogs”, “cats chase”, “chase

dogs”, “cats chase dogs”} of N-grams. Then, the frequency of each semantic role for

the last word in each N-gram was calculated and stored. For instance, the trigram

“the big cat” might occur 10 times in the training set and in 8 of these cases cat was the

AGENT while in the other 2 cases it was a PATIENT. This information was recorded in

memory for all chunks in the training set.

In testing, the back-off N-gram model processed sentences one word at a time.

At each word position it would try to find the N-gram of the whole sentence up to

and including this word in its memory. If the N-gram did not exist, it would delete

the initial word in the N-gram and try again. For example, when processing “the big

cat chased dogs” sequentially, at “dogs” it would first look for “the big cat chased

dogs” in memory, then “big cat chased dogs”, then “cat chased dogs”, and so on.

Once, the largest piece of context was found that existed in memory, it assigned the

most frequent role to the final word (see above).

This model has perfect memory of its input history and access to all N-gram

information in the training set. It is interesting for comparison with the NBL model-

because it uses the largest contextual chunk that is compatible with experience and

selects the most probable role based on frequency. However, it cannot generalize

beyond lexical sequences.

2.3 Input language and semantic roles
As model input, I used an English-like artificial language. The basic version of this

language is described here, some adaptations that were made are described in the

respective chapter methods.

Input sentences were generated using a construction grammar (Goldberg, 2006).

The language had six basic constructions and six syntactic alternations. Each of the

construction templates could generate a number of different sentences depending on

the phrase semantics and the possible lexical items that filled the template slots. The

lexicon size was 212 words and, in total, the grammar could generate around four

hundred billion distinct utterances. Constructions in the language had one verb and

up to three noun phrases plus function words. The semantic roles of noun phrases

were determined by the construction type. Possible semantic roles in the language

were AGENT, PATIENT, THEME, EXPERIENCER, RECIPIENT, GOAL and INSTRUMENT.

The semantic role of auxiliaries, verbs and verb inflections was set to ACTION. Table

2.2 shows all construction templates that were used.
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Construction (frequency) Word categories and examples
Inanimate Intransitive Action = ERGATIVE; Patient = OBJECT

Main form (9,5%) A cup was break-ing.
Animate Intransitive Action = UNERGATIVE; Agent = LIVING

Main form (9,5%) Old man-s jump-ed.
Transitive (Agent-Patient) Action = TRANSITIVE (AGENT-PATIENT);

Agent = LIVING; Patient = OBJECT;
(Instrument = INSTRUMENT)

Main form (19%) The man/dog catch-s3rd the small apple.
Syntactic alternation (9,5%) The small apple/dog is catch-edpar by her.
Instrumental preposition (5%) The man catch-s3rd the small apple with a net.
Alt. instrumental prep. (2,5%) The apple is catch-edpar by the man with a net.

Transitive (Theme-Experiencer) Action = TRANSITIVE (THEME-EXPERIENCER);
Theme = OBJECT; Experiencer = LIVING

Main form (9%) The stick/cat scare-ed the man.
Syntactic alternation (5%) The man/cat was scare-edpar by a stick.

Transfer Dative Action = DATIVE; Agent = LIVING;
Theme = OBJECT; Recipient = LIVING

Prepositional object (9,5%) The man give-s3rd the apple/mouse to a woman/cat.
Double object (9,5%) The man give-s3rd the woman/cat the apple/mouse.

Locative Action = LOCATIVE; Agent = LIVING;
Goal = LOCATION; (Instrument = INSTRUMENT)

Main form (9,5%) A woman was go-ing to the table.
Instrumental preposition (2,5%) A woman was go-ing to the lake with a bike.

Roles: AGENT PATIENT THEME EXPERIENCER RECIPIENT GOAL INSTRUMENT ACTION

Table 2.2.: Constructions in the input language. Each section of the table describes one
construction and its syntactic alternations (if any). The percentages show how often each form
occurred in the language. The right column shows which word categories from table 2.3 were
used and an example to each of the syntactic forms. The colors in the example sentences refer
to the semantic roles of words, indicated on the bottom of the table. The alternative nouns in
the examples (marked with a slash) indicate the positions where semantically unconstraining
nouns can replace the semantically constraining nouns. Unconstraining nouns can assume an
active and a passive role in a sentence. Thus, they introduce local ambiguity at the sentence
beginning which does not exist for constraining nouns.

The frequency of the different constructions was chosen to broadly reflect

distributional properties of English. Generally, active forms of a construction were

generated twice as often as the passive forms. Other alternations were generated less

frequently. I assumed the transitive construction to be more common than the others

and hence gave it higher probability, see Table 2.2 for the actual numbers.

Verbs were construction-specific, i.e., verbs from each category could only occur

in one construction and its syntactic alternations. There were 16 different items in

each verb category, see Table 2.3. The nouns were not construction-specific but for

each noun phrase slot in a construction, only certain nouns were allowed depending

on their semantics. LOCATION and INSTRUMENT nouns could only be in noun
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Word category Examples
Determiner the, a
Pronoun he, she, it, him, her, they, them
Noun LIVING (constraining) man, woman, father, mother
Noun OBJECT (constraining) ball, cake, orange, banana
Noun LIVING/OBJECT (unconstraining) cat, dog, rat, mouse
Noun LOCATION lake, beach, tree, roof
Noun INSTRUMENT net, knife, bike, stick
Adjective young, old, big, little
Verb ERGATIVE sleep, dance, jump, sit
Verb UNERGATIVE open, close, break, smash
Verb TRANSITIVE (AGENT-PATIENT) kick, chase, lift, follow
Verb TRANSITIVE (THEME-EXPERIENCER) scare, surprise, hurt, bother
Verb LOCATIVE go, walk, drive, run
Verb DATIVE give, throw, show, present
Auxiliary Verbs is, are, was, were, being
Prepositions to, by, with

Table 2.3.: Word categories. Each noun, verb and adjective category had 16 lexical items.
These word categories were used to instantiate the different constructions in Table 2.2. Auxiliary
verbs were used to express tense and aspect. The preposition to was used in the locative and
transfer dative constructions, by occurred in passive voice and with was used for instrumental
alternations.

phrases with the semantic roles GOAL and INSTRUMENT, respectively. Nouns from the

category LIVING could only occur in noun phrases with the roles AGENT, RECIPIENT

or EXPERIENCER. Nouns from the OBJECT category could only be used in noun

phrases with the roles PATIENT or THEME. The LIVING/OBJECT noun category was

special because these nouns could occur in noun phrases that instantiated both the

LIVING or the OBJECT category. This creates semantically unconstraining nouns

that, for example, could either be AGENT or PATIENT of an action. Examples of

this noun category are animals which can both be the agent, as in The dog chases the

ball., or the patient, as in The cat is caught by the man. These nouns are interesting to

investigate with respect to the integration of semantic cues (see chapter 5). I only

used this category in selected constructions and positions. In Table 2.2 these positions

are marked by alternative nouns in the examples (such as man/dog). In these slots,

constraining and unconstraining nouns were equally likely.

Noun phrases consisted of a determiner, an adjective, and a noun. The deter-

miner was definite (the) with 60% probability and indefinite (a) with 30% probability.

In 10% of all cases, the noun phrase was replaced by a pronoun with the correspond-

ing gender and number. With 75% probability, the noun phrase was singular and

otherwise plural. In accordance with English grammar, an indefinite determiner was
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Grammatic context Event semantics Example verb phrase
example

Active sentence, singular subject Simple present chase -s3rd

The cat chase -s3rd the ball. Simple past chase -ed
Progressive present is chase -ing
Progressive past was chase -ing

Active sentence, plural subject Simple present chase
The cat -s chase the ball. Simple past chase -ed

Progressive present are chase -ing
Progressive past were chase -ing

Passive sentence, singular subject Simple present is chase -edpar

The ball is chase -edpar by the cat. Simple past was chase -edpar

Progressive present is being chase -edpar

Progressive past was being chase -edpar

Passive sentence, plural subject Simple present are chase -edpar

The ball -s are chase -edpar by the cat. Simple past were chase -edpar

Progressive present are being chase -edpar

Progressive past were being chase -edpar

Table 2.4.: Verb constituents were adapted by subject number and event semantics. List
of all possible variations of the verb constituents for the example chase. Auxiliaries and verb
suffixes depended on subject number, aspect, tense and voice.

removed if the noun phrase was plural. In each noun category, there were 16 different

lexical items. The adjective category also included 16 items and was not specific to

different noun categories, i.e., no information about a noun could be inferred from

the adjective. Each adjective could occur in phrases with any semantic role. In 75% of

all noun phrases, the adjective was omitted.

Each sentence had a randomly chosen tense (present or past) and aspect (simple

or progressive) which amounted to 4 different combinations, all of which were equally

likely (see Table 2.4 for an example). Inflected words such as verbs in passive, past

or progressive forms or plural nouns were marked with morphemes “-ed”, “-edpar”,

“-ing”, “-s3rd” or “-s”. These were treated as a separate words by the input encoder.

Here, “-edpar” stands for the passive marker to differentiate it from the past tense

marker and “-s3rd” stands for the third-person-s to differentiate it from the plural-

s. The construction grammar generated sentences with different word lengths and

durations; from two-word sentences such as They sleep. with a length of 450 ms, up

to eighteen-word sentences such as The young women-s were being chase-edpar by the

angry father-s with the little bike-s. with a length of almost 4s. Each of the sentences in

the training and test sets was unique. Repeating content words were excluded, i.e.,

sentences like The black cat is chase-ing a red cat. were discarded.
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2.4 Mathematical glossary
Throughout this work, I rely on some mathematical terms to describe the NBL model.

These terms are standard in computational neuroscience and I introduce them in

alphabetical order.

Dirac delta pulse

A delta pulse δ(x) is a mathematical concept that is used to describe idealized point

masses, point charges, or in this case, spike events which are “points” in time. It is

zero everywhere except at point x and its integral is defined as
∫ ∞
−∞ δ(x)dx = 1. Since

my simulations used discrete time, delta pulse events were implemented as acting for

exactly one time step, independent of its length.

Forward Euler method

The Forward Euler method is a numerical procedure for solving an ordinary differ-

ential equation dx
dt = f (x) with initial value x(0) = x0. It is a first order method that

approximates a curve by a series of tangential lines whose slopes are determined

by f (xi) at the integration points xi. The quality of the approximation depends on

the step size h = xi+1 − xi. In all simulations I set h = 1ms. I used this method

to approximate the evolution of the dynamical equations describing neurons and

synapses and their interactions in the network.

Gaussian white noise

Gaussian white noise ξ is a stochastic process characterized by its expectation value

mean(ξ(t)) = 0 and standard deviation, with realizations that have no temporal

autocorrelation: knowledge of the value of ξ at time t does not allow prediction at any

other time t’ 6=t. I used it as discrete-time noise process that is generated by a random

draw from a Gaussian distribution with mean 0 and standard deviation σ.

Kappa correction

Readout performance was kappa corrected to factor out what a random classifier

could achieve. This was done by projecting the raw performance Praw of a readout

from the interval between 0% and 100% to the interval between the score of a random
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classifier Prand and the maximally possible score PMAX . This yields the kappa score

Pκ .

Pκ =
Praw − Prand

PMAX − Prand

The score PMAX was task-dependent and could be 100% or less. It is indicated each

time kappa correction was used.

Linear regression using ordinary least squares

Linear regression is a method to find a solution for the equation y = X b + r where

y and X are given and r, the error term, should be as small as possible, by some

measure. This means the equation needs to be solved for b in a way that fulfills the

minimal error condition. The ordinary least squares method provides a solution that

minimizes the square of the error r by applying the formula b = (XTX)−1 · XTy. In

the NBL model, the matrix X corresponds to the aggregated network states (u and

w for each neuron) over time and the vector y corresponds to the target output at

each point in time. The estimated values for b were then used as weights for the

connections from the network to the readout.

Poisson process

A Poisson process is a stochastic process that generates random occurrences of an

event that happen within a given time window. The probability P of an event being

realized n times in a given time t is P = (λt)n

n! e−λt where the rate λ is the sole parameter

defining the statistical process. Poisson processes have been found to approximately

describe the distribution of cortical spikes (Softky & Koch, 1993), so I used them to

generate input spike trains from sources external to the network. In simulations, I

approximated the Poisson processes by allowing only one event per time step, that is,

I only considered n = 1 for a time step of dt = 1ms and omitted all additional spikes.

The probability of n ≥ 2 events happening with a spike rate of λ =20 Hz, which is

the rate used for most of the input stimuli, was smaller than 0.02%.
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3Effects of input encoding on
processing and memory

3.1 Introduction
In order to generate sentence-level interpretations in a context-sensitive manner,

the human brain has to implement structured sequence processing capabilities in

neurobiological infrastructure (Petersson et al., 2012). One way to identify possible

mechanisms for this is to build neurobiological models and investigate the sequence

processing capacities in these models. Simulating neural populations of various sizes

and degrees of realism is an active field of research. Particular focus has been on

studying the different dynamic regimes of network activity (Ostojic, 2014; Wang,

2002; Rabinovich et al., 2001) and the influence of different model features, including

connectivity (Wallace et al., 2013), neuron (Izhikevich, 2003; Brette & Gerstner, 2005)

and synapse model (Duarte & Morrison, 2014; Zenke et al., 2015), on the network

dynamics. However, it is less well-researched how the computational properties of

networks are influenced by the manner in which information is encoded into these

networks.

The spiking activity of networks depends on how information is delivered as

input (Duarte & Morrison, 2014; Duarte et al., 2018). For example, if only one neuron

is stimulated externally, it will be activated and activate the neurons it is directly

connected with. But other neurons in the network will be less active. If, in contrast,

all neurons are stimulated equally, the network will show more homogeneous activity

and all neurons fire with similar spike rates. Even though the overall spike rate might

be the same in the two situations, the nature of the network activity is different. This

is illustrated in Figure 3.1. Similarly, the way the neurons are stimulated changes
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Figure 3.1.: Illustration how stimulating a single neuron (left, arrow) generates a different
type of activity compared to a network where all neurons are receiving an equal stimulation
(right, arrows) while the total spike-rate is the same in both cases. For illustrative purposes, the
network connectivity is arranged in a line such that neurons are only connected to neurons
that are directly above or below them in the spike raster plots.

the spiking behavior. If a single neuron is stimulated with a constant current, it will

typically spike regularly or with adapting inter-spike-intervals. But if it is stimulated

by a spike train generated by a Poisson process, it will show more variable behavior

with interleaved short and long inter-spike-intervals depending on the spike times

in the input. Thus, it is conceivable that the information processing taking place in

a network depends on both how the network is stimulated, the encoding scheme,

and on which neurons are stimulated, the input projection. For example, different

stimuli may be easier or harder to distinguish, depending on these factors. If in

addition, the neurons are equipped with dynamic memory variables, the network

might retain information for a longer period with one input regime compared to

another (Petersson, 2005).

To test the influence of input encoding on processing, I compared versions of

the NBL model with three different encoding schemes, using two different input

projections, on three benchmark tasks.

3.1.1 Encoding schemes
The first encoding scheme stimulates neurons with direct currents which is inspired by

patch-clamp experiments in neurophysiology (Rauch et al., 2003). In these simulations,

a constant input current generates spiking in a subset of neurons that then drive

population activity (e.g., Boerlin et al., 2013; Ostojic, 2014). Since biological neurons

largely communicate through spikes, direct current stimulation does not represent a

natural mode of signalling but implements a reference model that allows noise-free

information transfer to neurons.

44 Chapter 3 Effects of input encoding on processing and memory



The other encodings reflect two possibilities of how cortical neurons commu-

nicate. In the debate on how information is coded in spike trains – the question of

what the neural code is – there are typically two positions. One side argues that the

timing of spike events carries information (temporal code perspective), while the

other side views the firing rate of neurons as the carrier of information (rate code

perspective). One of the earliest experiments investigating the neural code found that

stronger tension of a muscle leads to higher firing rates of the sensory neurons in

the muscle (Adrian, 1926). Later, Rieke and Warland (1999) argued for a temporal

code based on the fact that it supports higher coding efficiency compared to a rate

code (see also Thorpe et al., 2001) and the finding that response times to a stimulus

can be of the same order of magnitude as the inter-spike intervals of the neurons

processing the stimulus. This suggests that a single, or a few spikes, can encode

response relevant information and supports the temporal code view. These results

are consistent with experimental findings on sound localization in the barn owl that

found that a temporal code allows the animal to perceive time differences of less than

5 ms (Gerstner et al., 1997).

However, others have questioned the interpretation of these findings. Borst

and Theunissen (1999) argue that the fact that single spikes matter is not evidence

against the rate code since the time windows over which a rate is computed can

be arbitrarily small. Hence, sensitivity to single spikes can support both, rate and

temporal code models. London et al. (2010) find that single spike suppression in the

rat barrel cortex can have large effects on population activity. In combination with

the observed variability of spike timings in neurons, they argue that this supports a

neural code that is robust to perturbations, suggesting a rate code over populations

of neurons. In addition, Ahissar et al. (2000) found that a temporally coded signal

from rat whisking is translated into a rate code in the rat's cortex which suggests the

coexistence of both neural codes. According to them, either coding scheme can be

used by different systems depending on the application.

More recently, Brette (2015a) has taken a different approach in this discussion.

According to Brette, the question “Does the brain use rate or temporal coding?” is

ill-posed. A better question would be “Is it possible to reduce the spiking interactions

of neurons to the interaction of rates?”. He argues that rate coding is a summary

statistic derived from measurement methodologies while spikes are the biological

basis of neuronal communication and live in the time domain, i.e., they are causal.

He rejects the idea that both coding schemes are extremes of a continuum, or that

brains use a mix of the two. He argues that correlations between spike rates and
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information processing (like Adrian, 1926) is not evidence against the temporal code,

since also in a temporal code spike rates can fluctuate and spike timing can carry the

same information.

In this study, I use one version of a temporal neural code to deliver information

to the neural network, which I refer to as temporal encoding scheme. I stimulate the

network with spike trains generated by a Poisson process with a fixed constant rate.

Each stimulus is encoded through different Poisson processes with the same rate such

that only the instantiation of the Poisson process, the precise spike times, encode

information. These spike trains are delivered over several input channels that each

have different connections to the network. Following the analysis of Thorpe et al.

(2001), this encodes information using both latency (spike timing) and rank (spike

order) information.

I also use a rate encoding scheme and compare it with the temporal code and

direct current injection. I stimulate networks with spike trains where the precise

spike position varies between presentations of the same stimulus. However, the spike

rate, a parameter of the Poisson processes generating the spike trains, can be used to

identify the different stimuli. Again, I use several independent input channels that

each have a different but constant rate per stimulus. Therefore, different stimuli can

be identified by the combination of spike rates on the individual input channels. The

three encodings are shown in Figure 3.2.

It is worth noting that network models that do not use spiking neurons implicitly

assume a form of rate-based coding. In computational neuroscience, a temporal

code is sometimes used when simulating spiking network models (Maass et al.,

2005; Duarte & Morrison, 2014) but rates are used as well (Litwin-Kumar & Doiron,

2014; Eliasmith, 2013) reflecting the lack of consensus on whether spike times really

matter.

3.1.2 Input projection
Orthogonal to the encoding schemes, I also compared two distinct forms of input

projections. “Projection” here refers to the connectivity between the input channels

and the network. I distinguished between stimulus-specific and stimulus-general

projections, see Figure 3.3. Stimulus-specific projections connect each input with a subset

of neurons that is randomly chosen. This adds a spatial component to the encoding.

Some neurons in the network may be exclusively excited by one stimulus, therefore

any input-driven activity of such a neuron can be used to identify the stimulus. To

investigate how well the encoding schemes can deliver information without this
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Figure 3.2.: Encoding schemes and input projections. Each panel shows how a series of
three input stimuli [A] [B] [A] is encoded in input channels (rows in the spike rasters) where
each channel has a fixed connection to a randomly chosen subset of neurons in the network
(sketched on the right). The channel activation shows currents for the direct current encoding
and spikes for the temporal and rate encoding schemes. Note how currents and spikes differ
per channel between stimuli. For the temporal encoding, the spike rate is the same across
channels for each stimulus but the timing differs between stimuli. When a stimulus repeats, the
precisely timed spike pattern repeats. For the rate encoding the channel rates differ between
stimuli. When a stimulus repeats the rate on each channel repeats but not the timing.

spatial component, I tested a second stimulus-general projection. In this projection,

the same neurons are stimulated by each input and only the current strengths, spike

times, or spike rates carry the information necessary to distinguish stimuli from each

other. This is implemented by using the same input channels for all stimuli, which

are activated differently depending on stimulus identity.

Another projection type that could be tested would activate disjoint sets of

neurons for each stimulus. Since the number of stimuli could exceed the network size

in the tasks investigated here, such a projection was not practicable.

3.1.3 Benchmark tasks
To evaluate how the different encoding schemes and projections change the processing

properties of the NBL model, I tested it on three benchmark tasks that are relevant

for the unification module in the Memory, Unification & Control model (Hagoort,

2005). Unification integrates information provided by long-term memory, which

3.1.3 Benchmark tasks 47



Stimulus-general projection Stimulus-specific projection

A B A B

Figure 3.3.: Input projections. The left panel shows how two stimuli [A] and [B] are stimu-
lating the same set of neurons in the network (stimulus-general projection). The right panel
shows how [A] and [B] are connected to different subsets of neurons in the network that may
partially overlap (stimulus-specific projection). These distinct projections are used for all three
encoding schemes.

corresponds to an input sequence of retrieved word representations, into a sentence-

level interpretation. To unify a stream of incoming words, they need to be identified

correctly. Thus, in the separability task I tested how many different input stimuli can

be distinguished from each other. Furthermore, to process sequences of inputs, the

unification module needs some form of processing memory. In the memory tasks I

tested how long information remains available in the network. Finally, to form a full

sentence interpretation, information from different words needs to be combined. In

the integration task, I tested a simple form of this where pairs of adjacent stimuli need

to be identified after a time delay. This task also requires sensitivity to serial order.

I used randomly generated sets of stimuli that had no internal structure. Thus,

the only information a stimulus provides is that it is different from all other stimuli

in the set. It is likely that the interface from memory to unification provides richer

representations including syntactic and semantic features (Hagoort, 2013), but using

unstructured stimuli allows me to avoid specific linguistic assumptions about the

feature structure of words.

3.2 Methods
I simulated the NBL model as described in chapter 2. Table 3.1 indicates the param-

eters I used here that diverge from the general description. The different tasks and

encoding schemes I used here are described below because they deviate from the

general description chapter 2 and explore more encoding mechanisms than described
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Name Value Description
τw 144 ms adaptation time constant
τsyn 20 ms synapse time constant
ρc 2% connection density
ftunen 7 Hz network tuning rate
ntrain 10 000 training set size
ntest 2000 testing set size

Table 3.1.: Parameter values used in this chapter

there. The input stimuli were encoded either as a direct current or as a spike pattern

delivered over the input channels. The pattern on each channel was generated inde-

pendently and they were connected to an independently chosen set of neurons in the

network.

In the stimulus-specific projection, each input had a dedicated set of channels that

were only active during this stimulus. For direct currents, this was one channel per

stimulus, while in the spike-based encoding schemes I used 5 channels per stimulus.

In the stimulus-general projection, I used 100 input channels. In section 3.3.1 I varied

the number of channels between 10 and 100. All channels were activated by all

input stimuli (see Figure 3.3). Thus, only the exact current, rate or spike distribution

over the channels carried information to distinguish items and there was no spatial

component to input encoding.

The input channels were connected to subsets of the excitatory neurons. The

connection probability between a channel and a neuron was 5%, so each channel

targeted approximately 40 neurons. The input weights were excitatory and chosen

from a uniform distribution between 0 and 1. Stimuli had a length of 50 ms and

inputs were presented consecutively without pause. There was an input weight

scaling parameter Iinp which was tuned such that the evoked spike rate was 2.5 Hz

(mean across neurons) when all network-internal connections were set to zero.

With direct current encoding, a constant current was injected into the connected

neurons and caused them to fire. For the stimulus-specific projection, all currents

had the same strength while for the stimulus-general projection, the relative current

strengths were drawn from a Gaussian distribution with mean 1 and standard devia-

tion 0.5. The absolute strengths were determined by the scaling parameter Iinp and

the input weights. In temporal encoding, each input pattern was generated before the

start of the simulation by a Poisson process with a spike rate of 20 Hz per channel. In

section 3.3.1 this rate was varied between 10 and 200 Hz. Whenever a stimulus was

repeated in the input, the same spike pattern was used to stimulate the network. In
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rate encoding, spike patterns were generated anew before each stimulus presentation.

The pattern was a set of Poisson processes with constant rate per channel for each

stimulus. However, the rate of each channel was randomly drawn from a normal

distribution. Thus the different stimuli were distinguished by the combination of

rates on the input channels. The rate distribution had a mean of 20 Hz and a standard

deviation of 10 Hz. In section 3.3.1 the distribution was varied with a mean between

10 and 200 Hz and a standard deviation of 50% of the mean rate (i.e., between 5 and

100 Hz).

Input noise

In section 3.3.4, I tested the robustness of the encoding schemes to noise (all other

simulations were noise-free). For spike-based encoding I jittered (i.e., displaced in

time) each input spike independently following a Gaussian distribution with the

position in the noise-free spike pattern as its mean. The standard deviation σ of the

distribution determined the noise level. I used values of σ = 1, 5 or 10 ms. If a jittered

spike reached across the beginning or end of the stimulus, the displacement was

inverted in time to maintain a fixed number of spikes per channel. Jittered spikes that

went beyond both stimulus boundaries were deleted (less than 1% of all spikes).

Thorpe et al. (2001) discuss a rank coding where the order of spikes encodes

information, rather than their precise timing. It is less vulnerable to noise since only

the relative rather than the absolute spike times matter (Brette, 2015a). For the noise

levels that I applied, each spike swaps its position with 4, 12 and 24 other spikes on

average, when σ = 1, 5 or 10 ms respectively. Thus, for 100 channels, 50 ms stimulus

duration, at a 20 Hz channel rate and σ=10 ms, each spike swaps its position with one

quarter of all spikes in the stimulus pattern. This represents a substantial amount of

noise considering the possibility of a rank-based encoding.

For direct currents, I added white noise to their amplitude. If a current was

strong enough to induce regular firing, this created approximately Gaussian jitter

in the inter-spike-intervals (Tuckwell, 1988; Gerstner et al., 2014). In simulations,

the noise level was chosen such that, in the single neuron case with a fixed current

strength, the resulting temporal displacement of spikes in the neuron receiving the

input current had approximately the same standard deviation as in the two spike-

based encoding schemes.

Importantly, I added noise to the encoding already before the training of the

readout, a situation one would also find in cortex where noise is always present.
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Figure 3.4.: Benchmark tasks. The six panels show example input-output mappings for the
three tasks (online and offline version) with a delay of 100 ms (2 stimuli). Input was delivered
to the network sequentially and the target output is shown at the appropriate time. The
separability task is the zero-delay version of the online/offline memory tasks.

Task description

To test separability, I used an instantaneous identity mapping task where the target

output was identical to the input stimulus. To test offline memory, I used a delayed

identity mapping task where the target output was delayed by varying numbers of

stimuli. During delay, there were filler inputs [x] and there were filler target outputs

[x] when there was no other item defined as target output. These correspond to the

empty spaces in Figure 3.4 which illustrates the different tasks. Thus, for an input [A]

[x] [.] with a delay of 50 ms (duration of one stimulus), the target output was [x] [A]

[.] where [.] indicates the end of a sequence. Filler items were represented in the same

way as other inputs. Using fillers was preferable to having no input, which tends to

shut off network activity, as well as to noise input, which disturbs memory traces in an

unpredictable way. In the output, fillers were a separate regression dimension, similar

to the other target stimuli, but they were excluded when computing accuracy.

To test online memory, I used an online delayed identity mapping task. Each

training and test sequence was a string of inputs followed by filler items [x] for the

delay and the end-of-sequence marker. For example, for a delay of 50 ms (duration

of one stimulus) this could be [A] [B] [D] [x] [.]. The target output was the same

sequence shifted by the duration of the delay, preceded by filler items. In the example,

the target would be [x] [A] [B] [D] [.]. In contrast to the variable sequence lengths in

the offline tasks, in the online version sequences had a fixed length of 20 stimuli.

To test offline integration, I used a task similar to offline memory but with two

stimuli followed by fillers. The target output was coding for a combination of these
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stimuli. For example, with a delay of 50 ms (duration of one stimulus), the input

[A] [B] [x] [.] had the target output [x] [x] [AB] [.], see Figure 3.4 lower left panel.

Importantly, also the order of stimuli needed to be identified (i.e., [AB] was different

from [BA]). To test online integration, I used a variant of the online memory task with

the same continuous sequence of input stimuli. As in the offline integration task, the

target output for the online integration task was the combined value of two input

items. Here, I also used sequences with a fixed length of 20 stimuli.

In training and testing, an uninterrupted sequence of items with fixed delay

was presented. Thus, each end-of-sequence marker was followed by a new sequence

of the same type, with items randomly chosen from the stimulus set. All stimuli

had the same duration and were randomly generated. The stimulus set size and

input-output delay determined the task difficulty. To make the tasks comparable,

fillers and end-of-sequence markers were excluded from calculating accuracy and

only the accuracy on the output before the end-of-sequence marker was counted in

the final score.

3.3 Results
My goal was to evaluate how different encoding schemes influence network process-

ing in terms of separability, memory, and integration. The encodings were crossed

with projection type (see Figures 3.2 and 3.3). Since the network parameters re-

mained the same in all simulations, differences in task accuracy were due to different

encodings and projections.

3.3.1 Separability and influence of rate and channel number
The first task focused on input separability. The task is an instantaneous identity

mapping of input which requires the NBL model to identify an incoming stimulus

and output it instantaneously.

Figure 3.5A shows that separability of 1024 different stimuli was 99±0% accu-

rate with the stimulus-specific projection when using direct current input. Stimulus-

general projection allowed the identification of 512 different input stimuli with 97±1%

accuracy when using temporal encoding. The network consisted of 1000 neurons,

so on average two neurons were necessary to encode a stimulus using the general

projection. Rate encoding performed worse than the other encodings, and this was

more pronounced when using a general projection.
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Figure 3.5.: Separability and influence of input rate and channel number. A Accuracy for
the instantaneous identity mapping to test separability. The stimulus set sizes are powers of
2 from 2 to 1024, the shading indicates 95% confidence intervals. B Influence of input rate
and channel number on separability with general projection. The color indicates the largest
stimulus set size for which accuracy was above 95%. Set size 0 indicates that accuracy was
never above 95%.

To evaluate, whether these separability results depended on model parameters,

I varied the number of input channels and the mean spike rate on these channels.

Mean spike rate as a parameter only applies to spike-based encodings while input

channel number only applies for cases with general projections. Therefore, I only

compared spike-based encodings with general projection.

Single-neuron spike rates in mammalian cortex typically lie between 1 and

100 Hz (Markram et al., 2015). There is also evidence for rates of up to 200 Hz in

hippocampal ripples (Csicsvari et al., 1999). I used input rates within this range, from

10 to 200 Hz. For the temporal encoding, each channel had the same firing rate for

each stimulus, set to the mean firing rate. For the rate encoding, the firing rates varied

between channels and stimuli. Those were drawn from a normal distribution around

the mean firing rate with a standard deviation of 50% of the mean firing rate. I tested

separability for stimulus set sizes between 2 and 1024.

Using linear mixed models, I tested how the separability accuracy was influ-

enced by encoding scheme, channel number and mean spike rates. As dependent
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variable, I used logit transformed task accuracy and as random effect I used different

network subjects. Throughout, I used the maximal random effects structure that still

converged (Barr et al., 2013) and p-values were obtained by likelihood-ratio tests.

I found a main effect for the encoding scheme (χ2(1)=2023, p<0.001), the mean

spike rate (χ2(1)=130, p<0.001) and channel number (χ2(1)=380, p<0.001). The

interactions of the encoding with both the channel number (χ2(1)=38, p<0.001), and

the mean spike rate (χ2(1)=390, p<0.001) were significant. I therefore further analyzed

the effect of encoding on accuracy for each encoding scheme separately. I observed

significant effects for both: For rate encoding, there was a main effect for both channel

number (χ2(1)=430, p<0.001) and mean rate (χ2(1)=400, p<0.001). For temporal

encoding, there was also a main effect for both channel number (χ2(1)=260, p<0.001)

and mean rate (χ2(1)=12, p<0.001). However the latter went in the opposite direction

than for the rate encoding: higher accuracy was observed for lower rates.

These results show that the accuracy for both encoding schemes depended on

the parameter choices for mean input spike rate and channel number. However, the

temporal encoding performed significantly better than the rate encoding, independent

of those parameters. In fact, for every parameter combination tested, temporal

encoding performed better than rate encoding. For rate encoding, the largest stimulus

set that allowed for an accuracy above 95% was 128 for the highest tested firing rate

(200 Hz) and the highest tested channel number (100). For temporal encoding, the

largest stimulus set that was separable with 95% accuracy was 512, for channel rates

up to 50 Hz.

3.3.2 Memory
The memory tasks are based on delayed identity mapping and require the NBL

model to identify an incoming stimulus and recall it after a fixed delay period. These

tasks come as an offline and an online variant. In the offline memory task, the input

stimulus is followed by filler items that do not carry information. The NBL model

only needs to retain the information of the stimulus item. In the online memory task,

there is an ongoing stream of input stimuli, as it would be in a sequence of words,

and the network is required to recall them one by one after a fixed delay, see Figure

3.4.

Figure 3.6 shows the accuracy on the offline and online memory tasks for all

combinations of encoding scheme and projection as a function of delay times. In

the analysis, I focused on two questions: How does the rate encoding compare to

the average of the two other encodings? And how do the temporal encoding and
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Figure 3.6.: Memory for the different encoding schemes and input projections. Accuracy
for the offline and the online memory tasks for different encoding schemes and input projections.
The stimulus set size was fixed at 256 items, shading indicates the 95% confidence intervals.
The x-axis shows the time delay for recall.

the direct current encoding compare to each other? Furthermore, I investigated

how accuracy was influenced by task variant (online or offline) and projection. To

answer these questions, I used linear mixed models with logit transformed accuracy

as dependent measure. I removed data points where all encodings performed at floor

or ceiling. Mixed models had encoding, task variant, and projection as fixed factors

and network subject as random effect.

First, I looked at rate encoding compared to the two other encoding schemes

across delays. The maximal linear mixed model that converged only had by-subject in-

tercepts. I found a main effect for encoding (χ2(1)=230, p<0.001), projection (χ2(1)=93,

p<0.001) and task variant (χ2(1)=49, p<0.001). There was also an interaction of en-

coding and projection (χ2(1)=23, p<0.001). I therefore further analyzed the effect of

encoding on accuracy for each projection separately. I found main effects of the encod-

ing for both projections (both p<0.001), as well as an interaction between encoding

and task variant in the stimulus-specific projection case (χ2(1)=7, p=0.007) but not

for the stimulus-general projection (p=0.35). When splitting the data further by task

variant, I found simple main effects of encoding (p<0.001) for all four combinations

of task variant (online/offline) and projection (specific/general).
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Overall, these results show that rate encoding performed worse than the other

two encoding schemes. For all encodings, accuracy increased with a stimulus-specific

projection compared to the general projection. The interaction between task and

encoding shows that the difference in accuracy between encoding schemes was

sensitive to task variant.

Secondly, I investigated how temporal encoding compared to direct current

encoding, across delays. The maximum linear mixed model that converged had

by-subject intercepts and by-subject slopes for encoding. I found no main effect for

encoding (p=0.44) but did find main effects for projection (χ2(1)=55, p<0.001) and

task variant (χ2(1)=82, p<0.001). There was also an interaction of encoding and

projection (χ2(1)=14, p<0.001). I therefore further analyzed the effect of encoding on

accuracy for each projection separately. I only found a main effect of encoding for

the stimulus-specific projection. There, the direct current encoding performed better

(χ2(1)=9.5, p=0.002) while for the stimulus-general projection, the encoding schemes

did not differ significantly (p=0.11). There was no interaction between encoding and

task variant (p≥0.15) for either projection.

This analysis shows that, overall, there was no difference in accuracy between

temporal and direct current encoding. However, for the stimulus-specific projection,

the direct current encoding had a higher accuracy.

3.3.3 Integration
To test a simple form of information integration, I use the delayed adjacent item

integration tasks and test how well the combination of two subsequent stimuli can be

retrieved after a fixed delay time. The readout needs to retrieve the identity of the

pair including the presentation order after a given delay time after the presentation of

the first item of the pair. I use this task again in an online and an offline variant (see

Figure 3.4).

Figure 3.7 shows the accuracy in the online and offline integration tasks, for all

combinations of encoding scheme and projection type as a function of delay times.

As before, I focused on two questions in the analysis: How did the rate encoding

compare to the average of the two other encoding schemes? And how did the tempo-

ral encoding and the direct current encoding compare to each other? Furthermore,

I investigated how accuracy was influenced by task variant (online or offline) and

projection. I used linear mixed models as described above.

First, I analyzed rate encoding compared to the two other encodings across

delays. The maximal linear mixed model that converged only had by-subject inter-
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Figure 3.7.: Integration accuracy for the different encoding schemes and input projections.
Accuracy for a fixed stimulus set size of 16, shading indicates the 95% confidence interval. Time
delay for integration shown on the x-axis.

cepts. I found a main effect for encoding (χ2(1)=470, p<0.001), projection (χ2(1)=140,

p<0.001) and task variant (χ2(1)=8, p<0.001). There was also an interaction of en-

coding and projection (χ2(1)=12, p<0.001). I therefore further analyzed the effect of

encoding on accuracy for each projection separately. I found main effects of the en-

coding for both projections (both p<0.001). I found an interaction between encoding

and task variant in the stimulus-specific projection case (χ2(1)=11, p<0.001) but not

for the stimulus-general projection (p=0.64). When splitting the data further by task

variant, I found simple main effects of encoding (p<0.001) for all four combinations

of task variant (online/offline) and projection (specific/general).

Secondly, I looked at how temporal encoding compares to rate encoding across

delays. The maximal linear model that converged had by-subject intercepts and

by-subject slopes for encoding. I found no main effect for encoding (p=0.058) but I

did find main effects for projection (χ2(1)=180, p<0.001) and task variant (χ2(1)=27,

p<0.001). There was also an interaction of encoding and projection (χ2(1)=57, p<0.001).

I therefore further analyzed the effect of encoding on accuracy for each projection

separately. I found main effects of encoding for both projections. For the stimulus-

specific projection, the direct current encoding performed better (χ2(1)=36, p<0.001)
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while for the stimulus-general projection, the temporal encoding performed better

(χ2(1)=17, p<0.001). There was no interaction between encoding and task variant

(p≥0.18) for either projection.

These results show a similar pattern as for the memory tasks. Overall, rate

encoding performed worse than the other two encoding schemes and the accuracy for

all encodings improved with a stimulus-specific projection. The interaction between

task and encoding shows that the difference in accuracy between encoding schemes

was sensitive to task variant. Furthermore, there was a difference in accuracy between

temporal and direct current encoding, but only when testing both projections sepa-

rately. For the stimulus-general projection, the temporal encoding performed better

while for the specific projection, the direct current encoding performed better.

3.3.4 Noise tolerance
One argument against a temporal neural code is its potential vulnerability to noise

(Shadlen & Newsome, 1998; London et al., 2010). To assess this issue, I investigated

the effect of noise on the temporal encoding and compare it to the noise tolerance of

the other encoding schemes. Before presentation to the network, the temporal position

of each input spike is jittered independently, following a Gaussian distribution around

the original position. The standard deviation σ of this distribution determines the

noise level. For the direct current encoding, I added white noise to the input current

that jittered spike positions in the receiving neuron compared to the noise-free case.

The standard deviation of the jitter then corresponded to the noise level in the spike-

based encoding schemes (see methods for a detailed description).

I found that for a stimulus set size of 256 and a delay of 50 ms, the accuracy of

the temporal encoding in the online memory task dropped by less than 5% for σ=5 ms

and less than 15% for σ=10 ms, depending on the projection (see Figure 3.8A). The

spike frequency in each input channel was 20 Hz. Therefore, σ=10 ms corresponds to a

noise distribution with a standard deviation of 20% of the average inter-spike-interval

(see Figure 3.8B for an example).

To analyze these results, I again used linear mixed models with logit trans-

formed accuracy as dependent measure. The models had noise level, encoding, and

projection as fixed factors and network subject as random effect. I tested the three-way

interaction between noise level, encoding, and projection with by-subject intercepts.

Here, encoding had the three levels: direct current, temporal and rate encoding. I

found main effects for all three factors (all p<0.001) but also a three-way interaction
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Figure 3.8.: Noise tolerance of the encoding schemes. A Effect of noise level σ on different
encoding schemes and different stimulus projections during online memory task with a stim-
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Example patterns for different levels of noise. For σ=1ms, original pattern and jittered pattern
largely overlap (dark magenta marks) while σ=10 ms generates significantly different spike
patterns. The time shown is 100 ms which is the presentation time of two stimuli. The example
is taken from a stimulus-general projection where the same input channels encode different
stimuli. In total there were 100 of such channels, 40 are shown here.

(χ2(2)=120, p<0.001) and all three two-way interactions were significant as well (all

p<0.001).

To further analyze the data, I split it by projection. Instead of looking at all

encoding schemes at once, I split the data to answer the same questions I addressed

in earlier sections: How does the rate encoding compare to the average of the two

other encoding schemes? And how do the temporal encoding and the direct current

encoding compare to each other?

First, I looked at rate encoding compared to the two other encodings, separately

for stimulus-general and stimulus-specific projection. The maximal linear mixed

models that converged in both cases had by-subject intercepts and, for the specific
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projection only, by-subject slopes for noise level. For the specific projection, I found

a main effect for the encoding (χ2(1)=140, p<0.001, here rate compared to the other

encodings) and for the noise level (χ2(1)=3.9, p=0.05) but no interaction between

the two (p=0.2). For the general projection, I found main effects for both encoding

(χ2(1)=190, p<0.001) and noise level (χ2(1)=53, p<0.001) and also the interaction

between them (χ2(1)=39, p<0.001).

In these results, the interactions between noise and encoding are of particular

interest. Since there was no significant interaction for the stimulus-specific projection,

it means that rate encoding and the average of the other two encodings are equally

robust to noise. For the stimulus-general projection, there was an interaction between

encoding and noise, indicating that the other two encodings were less robust against

noise than rate encoding. However, one has to consider the low accuracy of rate

encoding in the noise-free case compared to the other two encoding schemes, i.e.,

accuracy was zero already without noise and could not decline any further.

Secondly, I looked at how temporal encoding compared to rate encoding, split

by projection. The maximal linear models that converged had only by-subject inter-

cepts. For the stimulus-specific projection, I found a main effect for the encoding

(χ2(1)=150, p<0.001, here temporal compared to direct current encoding) and the

noise level (χ2(1)=27, p<0.001) and an interaction between both (χ2(1)=25, p<0.001).

For the stimulus-general projection, I found main effects for both encoding (χ2(1)=37,

p<0.001) and noise level (χ2(1)=160, p<0.001) and also an interaction between them

(χ2(1)=13, p<0.001). However, the direction of the interaction was dependent on

the projection: for the specific projection, the direct current was more robust than

temporal encoding while for the general projection the temporal encoding was more

robust than the direct current encoding.

3.4 Discussion
In this chapter, I investigated whether the processing characteristics of a simulated

spiking network depended on the chosen input encoding. I tested three encoding

schemes, direct currents, precisely timed spike patterns, and spike rates, each with

either stimulus-general or stimulus-specific input projection (see Figures 3.2 and

3.3). I found that the choice of encoding scheme had a significant impact on the

performance of the NBL model in terms of separability, delayed recall, and integra-

tion. Overall, rate encoding performed substantially worse than direct current and

temporal encoding. Comparing the latter two with each other, I found a difference in
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performance depending on the projection. When using a stimulus-specific projection

the direct current encoding performed best, while with a stimulus-general projection,

the temporal encoding performed better. I also found that the specific projection

yielded higher accuracy compared to the general projection.

These results agree with theoretical arguments which suggest that temporal

encoding transmits information more efficiently than rate encoding (Thorpe et al.,

2001). They also agree with the results of Duarte et al. (2018) who investigated how

different encoding schemes affect separability. The two encoding schemes compared

by Duarte et al. (2018) correspond to the direct current encoding with stimulus-

specific projection on the one hand, and the temporal encoding with stimulus-general

projection on the other hand. In agreement with my results, they found that the

former yielded better performance. However, since I tested both projections in

combination with both encoding schemes, my results indicate that this difference

could mainly be due to the difference in projections. Duarte et al. (2018) speculated

that the performance difference between the two encoding schemes was reduced for

more complex tasks. In agreement with that, I found that the performance difference

due to projection was reduced in the online task variants compared to the offline

variants.

I found that all but one combination of encoding scheme and projection could

discriminate 256 stimuli in the separability task (accuracy of >90%) with a network of

1000 neurons. The exception was the rate encoding combined with a stimulus-general

projection which only yielded an accuracy of 5±1%. However, for larger stimulus

sets there were bigger differences in accuracy between combinations of encoding and

projection: with the general projection, the temporal encoding performed best and

with the specific projection, the direct current encoding performed best (the latter

distinguished 1024 stimuli with 99% accuracy). This shows that the number of stimuli

that are separable is on the order of the number of neurons in the network. These

results speak against mean field or neural mass models that reduce the number of

degrees of freedom in a simulation from one-per-neuron to one-per-population (Deco

et al., 2008). Such models describe the activity of a group of neurons with a probability

function over the neuron population, a mean firing rate, which implies the use of a

rate code. My results suggest that this would reduce the separability properties of the

network significantly.

One concern with a temporal code has been that it is potentially sensitive

to noise which is considered problematic given the observed variability of neuron

responses to repeated stimulus presentations (Shadlen & Newsome, 1998; London
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et al., 2010; see Brette, 2015a for discussion). The reasoning is that, if every single

spike and its temporal position carries information, a shift in time or the omission of

a spike changes the information that is encoded. To address this issue, I conducted

simulations where the spikes of the temporal encoding were jittered by Gaussian

noise and found that this encoding only showed a small to moderate performance

decrease even for high noise levels, suggesting that the temporal encoding used here

is robust to noise. Even when the performance was reduced by noise, in all tested

instances temporal encoding performed better than rate encoding. These results can

be explained given the higher information density in a temporal code. In other words,

using a temporal code, a fixed number of spikes can encode more information than

the same number of spikes can using a rate code (Thorpe et al., 2001). This increased

coding capacity can be used by the NBL model to connect multiple spike patterns,

which are noisy instantiations of each other, to the same information. Instead of a

temporal code where the exact timing of a spike matters, this results in a more robust

code where a time window of an individual spike carries the information. Since the

noise in my simulations is already present in the training phase (as it would be in

the neurobiological system), the width of such a time window can be adapted to the

present noise level and thus ensure reliable information encoding. Importantly, such

a coding scheme is not a form of rate coding, it is a spike-based temporal code that

nevertheless does not rely on absolute spike times (Brette, 2015a).

The main results are based on a fixed set of parameters for the neuron model,

network connectivity and the encoding schemes. These were chosen to be within

a neurobiological range, but it is conceivable that the particular parameter choices

determine the performance of each encoding scheme, or which one is the best. Sim-

ilarly, the task parameters could be chosen differently which may lead to different

results. Two choices are the number of input channels, especially for the stimulus-

general projection, and the spike rates on these channels. To see how these choices

affected accuracy, I tested how these parameters influenced separability. I found

that the difference between the two spike-based encoding schemes got smaller with

higher spike rates. However, within biologically plausible firing rates below 200 Hz

(Markram et al., 2015; Csicsvari et al., 1999), the results did not change qualitatively.

Interestingly, the highest separability for the temporal encoding was found right at

the most commonly observed post-stimulus firing rates in mammalian cortex, at ∼20

to 50 Hz (Markram et al., 2015).

The model did not include synaptic dynamics which would allow the network

to adapt to input. Spike timing dependent plasticity (STDP) regulates synaptic
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strength depending on the precise timing of pre-synaptic and post-synaptic spikes

(Markram et al., 1997). STDP is a suitable mechanism for neural networks to develop

sensitivity to an arbitrary set of spike patterns (Masquelier et al., 2008). Therefore,

if STDP would be added to the simulations, it is likely to increase the sensitivity of

the network to the temporal encoding scheme. Synaptic dynamics that run on longer

time scales, for example, realized through synaptic tagging (Frey & Morris, 1997),

would provide additional memory and improve the network's capability to solve

tasks with longer delays. How synaptic plasticity mechanisms, connectivity patterns,

and neuronal properties interact on a network level is an important open research

question. Results in this study suggest that input encoding should be included in the

investigation of these interactions to understand how all of them together contribute

to the computational properties of brain circuits.

The encoding schemes I tested differ in terms of their biological plausibility.

Direct current does not represent a way cortical neurons typically communicate and

can be seen as a noise-free benchmark for neuronal communication. I found that

temporal encoding performs similar or better, especially with the stimulus-general

projection and in the online integration task, which was the most complex task tested

here. Temporal encoding is also preferable since direct current encoding comes with

conceptual limitations: the output of one network – spikes – cannot be directly used

to excite another higher-level network. When using spike-based encoding schemes, it

becomes possible to directly connect different network modules and use appropriate

adaptation rules to develop the output of specific spike patterns (Legenstein et al.,

2005; Pfister & Gerstner, 2006; Memmesheimer et al., 2014). Such a setup may be

useful for modular simulations of cortical computations (Eliasmith, 2013) including

models of language production (Chang, 2002). With a progressing understanding of

the details of neural computation, it is likely that such modular models will become

more common in neuroscientific and linguistic research.

From a psycholinguistic point of view, I investigated the nature of a neurobio-

logical interface between the memory and unification component in the MUC model

(Hagoort, 2005). The input channels would be the neuronal fibers in, for instance,

the arcuate fasciculus, delivering information from posterior memory regions of the

brain to prefrontal unification regions. My findings suggest that the neural code

for transmitting information on these fiber structures could rely on spatio-temporal

spike patterns. Given the inefficiency of rate encoding I found, the interface between

memory and unification, which needs to transmit complex linguistic information

(Hagoort, 2013), is less likely to use a rate code.
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Given the distributed nature of the neurobiological language network and

especially the memory regions in the temporal cortex, there is likely to be some level

of stimulus-specific projection to the prefrontal unification component. However,

considering individual fiber tracts, such as the arcuate fasciculus, my results suggest

that a stimulus-general projection is more suitable. This would mean that individual

axons are not used solely for one word or piece of information, but that the activity

pattern transmitted over a fiber bundle collectively encodes the information. Given

the coding efficiency and the number of stimuli I could distinguish in the separability

task, it seems plausible that the information transmitted is either based on word

identity or on a more complex data structure encoding linguistic information.

The results presented here suggests that it is important to systematically in-

vestigate how encoding schemes modulate the processing characteristics of neural

networks in the effort to understand the neural code. Furthermore, the interactions be-

tween different encoding schemes and task complexity suggest that the investigation

of simulated neural networks should use complex, cognitively plausible, tasks.
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4Neuronal processing memory
for language comprehension

4.1 Introduction
Language is context-dependent at all levels of processing. Letters and phonemes

form syllables, syllables form words, words form phrases and clauses which then

combine into sentences, pieces of discourse, et cetera. To combine these units into

larger structures, information needs to be integrated over different time scales, from

milliseconds to seconds and beyond (Hasson et al., 2015). This hierarchy of time

scales is not exclusive to language processing, but important also in other cognitive

domains (Bernacchia et al., 2011; Murray et al., 2014; Gjorgjieva et al., 2016). From a

neurobiological point of view, cognitive processes are computed in cortical networks

by neurons and their interconnecting synapses. One element of neuronal commu-

nication is the action potential. It travels between neurons within a hundredth of a

second, has a fixed duration of around one millisecond, and a generic shape that is

independent of the amount of synaptic drive (Luo, 2015). Thus, neural signaling is

one or two orders of magnitude faster than the time scales of cognitive processes.

It is an outstanding scientific question of how a system based on short-lived action

potentials can provide memory on time scales that are relevant to cognition and

behavior (Chaudhuri & Fiete, 2016).

In this chapter, I examine some memory principles in the NBL model. I simu-

late language processing in networks of spiking neurons in real physical time, and

investigate what mechanisms can give rise to a processing memory that is suitable for

sentence comprehension. Specifically, I study how networks with different memory

characteristics resolve semantic relations between words in sentences. I will argue that

67



processing memory for language can be provided by experience-dependent changes

in neuronal excitability.

4.1.1 Memory as persistent activity
The long-term storage of information is often associated with changes in synaptic

conductances (Koch, 1999; Takeuchi et al., 2014), although this view has recently been

challenged (Gallistel & King, 2011). Short-term memory, in turn, is often conceptual-

ized in terms of persistently active neural assemblies. On this account, assemblies

are activated by an incoming stimulus and subsequently show an elevated level of

activity that persists beyond stimulus offset (Amit & Mongillo, 2003; Durstewitz et

al., 2000). Thus information is represented and maintained through sustained activity.

This view of memory on short time scales is supported by studies that have used de-

layed match-to-sample tasks in behavioral decision making. In these tasks, monkeys

are exposed to stimuli on a screen (e.g., a colored dot) and have to move their eyes to

a memorized screen location after a brief delay period. During the experiment, neural

activity is recorded from, for instance, the prefrontal cortex. Several studies have

shown that there was elevated, stimulus-selective activity during the delay which

was interpreted as a neural correlate of short-term memory (Funahashi et al., 1989;

Fuster & Alexander, 1971; Kubota & Niki, 1971). These findings have made persis-

tent activity the leading candidate model of memory on short time scales (Curtis &

D’Esposito, 2003). This type of short-term memory works as a passive storage device

that maintains information until the information is read (and potentially deleted) by

a readout mechanism, similar to register memory in computers (Jacob et al., 2010).

However, more recent studies have found evidence suggesting that activity may

not persist under certain task demands. In these studies, monkeys were trained to

perform another task during the delay, with increased demand for attention, and

found that neural activity did not reliably persist during the delay period (Watanabe

& Funahashi, 2014). Instead, there was a ramp-up reactivation immediately before

the saccade which was interpreted as a shift of attention, and suggest that elevated

firing may not be necessary for short-term memory (Eichenbaum & Cohen, 2004).

Thus, at present the role of persistent activity in short-term memory maintenance

remains unclear (see Stokes (2015) and Sreenivasan and D’Esposito (2019) for recent

reviews).
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Figure 4.1.: Spike rate adaptation causes history-dependent neuronal responses. Illustra-
tion of how the AdEx neuron N (black output spikes) can retain information encoded by a
stimulus (blue spikes) due to spike rate adaptation. After a period without input (here 100 ms),
a retrieval cue (orange spikes) triggers a response by the AdEx neuron that indicates if there
was an earlier stimulus. If there was one, the neuron reacts weakly to the retrieval cue (upper
right panel) while otherwise the neuron reacts more strongly to the retrieval cue (lower right
panel). This shows that spike rate adaptation cause history-dependent responses through an
activity-silent memory mechanism.

4.1.2 Activity-silent memory
An alternative account of short-term memory has focused on processes of synaptic

adaptation as a storage device. This was implemented computationally in networks

with short-term synaptic facilitation (STF) (Markram et al., 1998; Mongillo et al., 2008).

In these simulations, information is encoded by activating two different subsets of

neurons. The different input stimuli create distinct patterns of functional connectivity

because of short-term synaptic facilitation. After a delay, a generic retrieval cue is

sent into the network, causing different patterns of spiking activity for the different

inputs. From these spike patterns, the identity of the memorized stimulus could be

decoded reliably in the absence of persistent activity during delay. This work shows

that networks with short-term synaptic facilitation can memorize stimuli and recall

them explicitly using a retrieval cue.

Another theory of memory on short time scales has recently been proposed

in Fitz et al. (2020) where information was stored and maintained in short-lived

neuronal adaptation (Figure 2.4) rather than synaptic changes. On this account,

spiking activity triggers adaptive currents which temporarily hyperpolarize the

neuronal membrane and this can be viewed as writing information into memory.

This is consistent with experimentally observed bursts of neuronal activity during

the encoding stage (Lundqvist et al., 2016). Because these currents are coupled to

the membrane, information is also continuously retrieved from memory which also
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changes the functional state of the neuron. What these two accounts – neuronal and

synaptic short-term memory – have in common is that they do not require persistent

activity to maintain information, and they use dynamic variables for information

storage that are distinct from the membrane potential. In Figure 4.1 I illustrate this

proposal where information is stored in adaptive conductances. I simulated a single

AdEx neuron N and excited it with a strong input stimulus (blue spike pattern).

Neuronal adaptation is clearly visible in the spike response pattern (black output

spikes). Then, the neuron did not receive further input for 100 ms and therefore

stopped spiking. After a delay, I excited the neuron with a retrieval cue (orange spikes)

and because of the earlier input, the neuron responded weakly with a single spike to

the retrieval cue. In contrast, when there was no initial stimulus (lower right panel),

the activity of the neuron triggered by the retrieval cue was much stronger. This

shows that information can be stored using spike rate adaptation and this information

can be read out by a retrieval cue. The simulation also demonstrates that neuronal

memory is context-dependent. The retrieval cue can be seen as information that is

processed differently depending on contextual information (presence or absence of

the blue stimulus). This property of memory on short time scales is highly relevant

for language processing which requires the constant integration of words with their

linguistic context in a processing memory.

Synaptic and neuronal memory differ from persistent activity accounts in that

information storage is provided by physiological processes other than spiking activity.

These processes supply dynamic variables that determine the current state of the

network and change on slower time scales than the evolving membrane state. This

perspective on memory is summarize in Figure 4.2. Action potentials are short-lived

(∼1 ms) and the membrane potential reacts quickly to new input and integrates

information over a time window on the order of tens of milliseconds. In contrast,

neuronal and synaptic adaptation responds more slowly to input and typically inte-

grates information over longer time scales. For example, spike rate adaptation (SRA)

decreases a neuron's sensitivity given high levels of input and acts over hundreds

of milliseconds (Connors & Gutnick, 1990). Synapses elicit a synaptic current that

excites or inhibits the post-synaptic neuron when they are stimulated. These cur-

rents can be long-lasting and have time constants of up to 1000 ms (Gerstner et al.,

2014). These types of slower neuronal and synaptic processes can in principle serve

as information storage since information encoded in those variables is accessible for

several hundreds of milliseconds (Mongillo et al., 2008; Fitz et al., 2020). Because the

neural and synaptic changes induced by the adaptation mechanisms are different
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Figure 4.2.: Time scales of dynamic variables in physiology. Biophysical processes in neu-
rons and synapses are active on different time scales spanning several orders of magnitude.
These range from short-lived action potentials and fast membrane dynamics to neuronal spike
rate adaptation and short-term synaptic plasticity. Processes such as protein synthesis, switch-
ing, and synapse generation can act on longer time scales. All of these physiological processes
can potentially support memory.

from changes in membrane voltage and spiking activity, they have also been termed

activity-silent mechanisms (Barak & Tsodyks, 2014; Stokes, 2015).

4.1.3 Constraints on memory for language
The persistent activity model for memory has been developed in the context of de-

layed response tasks. In these tasks, a small number of items have to be remembered

and recalled explicitly after a delay following a retrieval cue. Memory requirements

for language processing, however, differ from this paradigm. During language

comprehension, a rapid stream of input words needs to be combined to generate a

sentence-level interpretation. In terms of the number of memorized items, already

simple sentences quickly exceed the limits of explicit recall in short-term memory

(Miller, 1956). Furthermore, linguistic information is not limited to word identity
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but carry lexical meaning as well as morphological and syntactic features. These

cues need to be integrated over variable temporal windows and at different sentence

positions in order to arrive at a coherent interpretation. Another important aspect

of many languages is that word order matters for their joint interpretation. For in-

stance, sentences such as “The child bit the dog” and “The dog bit the child” give rise

to different sentence-level interpretations but they use the same collection of words.

This means that information is integrated taking the precedence relation of words

into account. It is unclear how this can be realized in simple models of persistent

activity memory since only the occurrence of individual words is memorized while

their precedence order is lost (Ganguli et al., 2008). In order to perform fast sentence

comprehension, it has been argued that short-term memory needs to be accessible in

a content-addressable manner through retrieval cues generated by the word input

(Lewis et al., 2006). Memorized information constantly influences the state of the

network and therefore also processing. This means that explicit retrieval cues are not

required for the integration of information over time. Rather, integration happens

continuously in a state-dependent manner. Similarly, different types of information

(e.g., morphological, syntactic or semantic) are constantly integrated into the dy-

namical state of the network in order to generate an interpretation of utterances as

the processing outcome. I refer to it as state-dependent unification (Hagoort, 2005;

Petersson & Hagoort, 2012; Frank & Fitz, 2016; Fitz et al., 2020).

4.1.4 This study
Here, I investigate the nature of memory for language processing using the NBL

model. I stimulated the network with sequential language input and tested how

different parameters influenced its memory characteristics. As a readout target, I

used the semantic role of the word that was currently presented to the network. I

tested hypotheses derived from the persistent activity memory model and whether

network connectivity influenced the performance in a manner that is consistent with

these hypotheses. Furthermore, I tested hypotheses derived from the activity-silent

memory account and whether the time scales of neuronal adaptation and synaptic

currents affected the performance correspondingly.
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4.2 Methods
I simulated the NBL model as described in chapter 2. Table 4.1 indicates the parame-

ters I used here that diverge from the general description.

Variable Value Description
τw from 10 ms to 1 s neuronal adaptation time constant
τsyn from 10 to 500 ms synaptic current time constant
ρc from 1% to 10% connection density
ftunen from 3 Hz to 10 Hz network target spike rate
ntrain 20 000 words ≈ 2200 sentences training set size
ntest 5000 words ≈ 550 sentences test set size
a 4.0 nΩ−1 (0 Ω−1) neuronal sub-threshold adaptation con-

ductance
b 80.5 pA (0 pA) spike-triggered increment of neuronal

adaptive current

Table 4.1.: Parameter values used in this chapter. When a and b were set to 0, spike rate
adaptation was disabled.

When investigating the influence of connection density ρ and target spike rates

ftunen in section 4.3.1, I used τsyn=20 ms and τw=144 ms, following the proposed

parameter values in Brette and Gerstner (2005). When testing the influence of spike

rate adaptation and its time constant τw in section 4.3.2, I used recurrent networks

with ρc=5% and ftunen =5 Hz while keeping τsyn=20 ms. I used these same parameters

together with variable values for τsyn, in section 4.3.3. Finally, when comparing

performance to reference models in section 4.3.4, I used a recurrent network with

parameters ρc=5%, ftunen =5 Hz, τsyn=500 ms and τw=200 ms.

Feed-forward connectivity

To investigate the influence of recurrence, I compared recurrent networks (generated

as in chapter 2) with feed-forward networks. These were designed to have the same

number of neurons and synapses with the same weight distribution as the recurrent

networks but without recurrent connections. To achieve this, I generated a connec-

tivity matrix as for recurrent networks but with twice the connection probability

ρc f f = 2 · ρc. Then, I deleted the lower triangle of the matrix with randomly permuted

columns and inverted the permutation afterwards. This permutation was used to

ensure that inhibitory and excitatory synapses were deleted with equal probability.
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4.2.1 Semantic role assignment task
As network input, I used the language described in section 2.3. Sentences from

the language were delivered to the network sequentially. Each of the words had

a target semantic role. I trained a readout from the states of the NBL model to

assign a semantic role to each word instantaneously, as it was being processed. By

design, this role assignment did not only depend on the identity of the current word

but also on the preceding sentence context. I refer to the readout performance on

this task across all words in the tested sentences, excluding the end-of-sentence

markers, as overall performance. For many words, especially early in a sentence,

semantic role assignment was an ambiguous task since the disambiguating information

to resolve it correctly was not yet available. However, there was always sufficient

information at the last word of a sentence to assign the semantic role unambiguously

(i.e., there were no globally ambiguous sentences in the language). Furthermore,

since the semantic roles of the sentence-final words required processing memory

that could retain information from the beginning of the sentence, they required the

longest memory span. Therefore, I used the readout performance on the final word

to evaluate the memory properties of the network. The readouts for overall and

final word performance were both estimated from the entire network state collection,

recorded across all input words. All performances reported in this chapter were

kappa corrected (see mathematical glossary, section 2.4) with PMAX set to 100% for

final words. The mean performance of a random classifier across 10 seeds was Prand =

17.24% for the overall and Prand =12.14% for the final words.

4.3 Results

4.3.1 Memory through recurrence
The persistent activity model assumes that a population of neurons, once activated

by a particular stimulus, uses recurrent connections within the population to remain

active, even when the stimulus has been removed. In this way, information is main-

tained by an elevated level of activity. First, I tested whether processing memory in

static, randomly connected networks of spiking neurons was provided by recurrent

connectivity. If recurrence was required for memory, (i) recurrent networks should

outperform feed-forward networks with the same connection density. Furthermore,

(ii) memory should increase with higher connection density since the number of

cycles grows substantially with the number of connections in a network of constant
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Figure 4.3.: Effect of connectivity parameters on performance. Semantic role assignment on
the sentence-final word by the NBL model for different combinations of mean network spike
rates (shown on top of plots) and connection density for feed-forward and recurrent networks.
Error bars show 95% confidence intervals.

size. I tested this by comparing networks with different densities between 1 and

10%. And finally, (iii) stronger synapses should enhance memory since they support

stronger recurrent feedback connections. I regulated the synaptic strength in the

network with a global scaling parameter that tuned the average neuronal spike rate

to 3, 5 or 10 Hz while keeping input strength and the number of recurrent synapses

constant. Thus, higher spiking activity in the network was due to stronger recurrent

connections. The results of these comparisons are shown in Figure 4.3.

I applied linear mixed effect models to test how logit-transformed performance

was influenced by the structural network parameters. Categorical predictors were

effect-coded. In general, I used the maximal random effects structure that still con-

verged (Barr et al., 2013). In this section, this was only the network subject as intercept.

Throughout, p-values were obtained by likelihood-ratio tests. Using a mixed model

with the three-way interaction between network recurrence (feed-forward/recurrent),

connection density, and mean spike rate, I found main effects for all three factors

(p<0.001). In particular, the main effect for recurrence was such that feed-forward

networks outperformed recurrent ones (χ2(1)=300, p<0.001). There was no three-

way interaction (p=0.54) but two-way interactions between all three pairs of factors

(p<0.01 each). To further investigate the data, I split it according to recurrence. I

found main effects for connection density, and mean spike-rate for both recurrent and

feed-forward networks (p<0.001 each). Importantly, the effects were such that both

higher connection density and higher spike rates caused lower performance.

These results can now be evaluated in light of the hypotheses derived from

the persistent activity model. Hypothesis (i) predicted reduced performance with

feed-forward networks compared to recurrent ones. I found that the opposite was the
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Figure 4.4.: Influence of spike rate adaptation time constants on performance. The left
panel shows the performance of the NBL model with and without adaptation (τw=300 ms). The
right panel shows how performance with adaptation enabled depends on its time constant.
Error bars show 95% confidence intervals.

case in that feed-forward networks performed significantly better than recurrent ones.

Hypothesis (ii) predicted better performance with higher connection density. I again

found that the opposite was the case and lower connection densities delivered better

performance. And finally, hypothesis (iii) predicted better performance with higher

mean network spike rate, but here also, the opposite was the case. Lower spike rates

lead to significantly better performance than higher rates. Thus, I could not confirm

any of the predictions derived from the persistent activity model. This suggests that

recurrent feedback, as postulated by persistent activity accounts, cannot fully explain

the processing memory characteristics in the NBL model.

4.3.2 Memory through spike rate adaption
Next, I investigated the alternative proposal for processing memory that relies on

processes of intra-neuronal adaptation rather than connectivity. The neuron model

I used to simulate networks incorporated spike rate adaptation that influence the

neuronal activity on time scales longer than 100 ms. If spike rate adaptation supports

memory, performance should be low if there is no adaptation and it should be higher

for long time constants compared to shorter ones. To test this, I compared networks

with and without adaptation (figure 4.4, left panel) and investigated how the length

of the adaptation time constant τw influenced performance (figure 4.4, right panel).
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To evaluate the influence of adaptation statistically, I applied a linear mixed

model with adaptation (enabled or disabled) as fixed factor. Random effects included

the network subject as intercept and by-subject slopes for the adaptation. Other-

wise, the statistical modeling was done as described above. I found a main effect of

adaptation (χ2(1)=21, p<0.001) showing that without adaptation, performance was

significantly worse than with adaptation. I then tested for variation in the time con-

stant τw when adaptation was enabled. Using a mixed model with τw as fixed factor

and intercepts for network subjects as the only random effect, I found a main effect of

length (χ2(1)=71, p<0.001) where longer time constants lead to better performance.

These results are in line with the predictions of the activity-silent memory model and

they indicate that neuronal spike rate adaptation supports processing memory in the

simulated networks.

4.3.3 Memory through synaptic currents
To broaden the perspective on possible mechanisms for processing memory, I also

investigated whether synaptic processes could be utilized. I focused on synaptic

currents that can have a non-instantaneous effect on post-synaptic neurons. When

a synapse is activated by a spike, the synaptic conductance is increased, generating

a current that excites or inhibits the post-synaptic neuron. The shape, amplitude

and duration of this current differs between synapse types but synaptic transmission

can happen on much longer time scales than the spike itself (Gerstner et al., 2014)

and therefore provide a memory of the preceding stimulus history. I tested this by

simulating the NBL model with different synaptic time constants τsyn from 10 to

500 ms. To also investigate the interaction with neuronal adaptation, I tested each of

these cases with τw ranging from 10 to 500 ms (see Figure 4.5).

To analyze the results statistically, I used a linear mixed model with τsyn and

τw as fixed factors. Random effects included the network subject as intercept and

by-subject slopes for τsyn. Otherwise, the statistical modeling was done as described

above. I found a main effect for both τsyn (χ2(1)=52, p<0.001) and τw (χ2(1)=120,

p<0.001). In both cases, longer time constants improved performance. In addition, I

found an interaction effect between synaptic and neuronal time constants (χ2(1)=59,

p<0.001). These results are shown in figure 4.5. In the previous section, I had used

τsyn=20 ms. For this value, performance improved from short to long adaptation

time constants. Hence, for short synaptic time constants, processing memory can be

enhanced by longer neuronal time constants. However, for long synaptic τsyn, it is

less clear how spike rate adaptation contributes to memory. For τsyn=500 ms the best
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Figure 4.5.: Long synaptic current time constants enhance memory. Performance depends
on both synaptic current and neuronal adaptation time constants. Error bars show 95% confi-
dence intervals.

performing models had a shorter τw=200 ms. Using a linear mixed model with data

limited to τsyn=500 ms and only τw as fixed factor, I found no main effect (p=0.085).

Thus, for long τsyn an increase in τw was not improving performance.

4.3.4 Comparison of NBL model performance with reference
models
To put the semantic role assignment task into perspective, I compared the NBL model

to two other reference models that did not have a neural network architecture. In

the first model, the linear readout used in the NBL model was directly applied to

the sequence of input words. Since the readout does not possess memory on its

own, I call it the memory free readout model. The difference in performance compared

to the NBL model illustrates the contribution of the spiking network itself. As the

second reference model, I stored all N-grams from all sentences of the training set

together with the target semantic role for the last word of each N-gram. I then used a

back-off approach to assign the semantic role for the largest known contextual chunk

in memory (see section 2.2.3 for a detailed description). In case of ambiguous context

(multiple semantic roles are possible), the back-off N-gram model assigned the role

that occurred most frequently in this context. This model had perfect memory of

the sentence context and stored all N-gram-related statistical information from the
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Figure 4.6.: Comparison of NBL model with reference models. The left panel shows average
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shows performance by word position in a sentence. Error bars show 95% confidence intervals.
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between the 2nd and 14th position. Only a few sentences were longer than eleven words which
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sentences of the training set. The results from these model comparisons are shown in

Figure 4.6. As before, performance was measured on the final word of each sentence.

At this point, all sentences were non-ambiguous and the longest processing memory

was required to assign semantic roles correctly. In addition, I investigated overall

performance, that is, the percentage of correct role assignments on all words of the

sentences in the testing set.

The memory free readout assigned the correct role on the sentence-final word in

49±1% of the cases while the NBL model performed at 92±1% (χ2(1)=87, p<0.001).

The overall performance was 60±1% and 85±1%, respectively (χ2(1)=100, p<0.001).

The statistical analysis was performed analogous to previous sections, with logit-

transformed performance (overall or final word) as dependent variable and model

type as fixed factor. The random effects included only intercepts for network subjects.

The difference in overall performance between the back-off N-gram model and the

NBL model was small but still significant (χ2(1)=46, p<0.001) with 81±0% compared

to the 85±1% of the NBL model. Performance on the sentence-final word was also

higher for the NBL model with 92±1% compared to 77±1% for the back-off N-gram

model (χ2(1)=58, p<0.001). Thus, the NBL model outperformed both reference

models by a significant margin.
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4.4 Discussion
In this chapter, I used the NBL model to evaluate different theories about the neurobio-

logical basis of processing memory where memory span was tested during a sentence

comprehension task. I found that in the NBL model, processing memory is provided

by activity-silent processes such as spike rate adaptation and synaptic currents with

long time constants. At the same time, I could not find evidence that recurrent connec-

tivity alone could provide better processing memory than feed-forward connectivity,

a central tenet of the persistent activity account. In general, recurrent connectivity

was detrimental to semantic role assignment relative feed-forward connectivity with

activity-silent processes in that it decreased processing memory somewhat.

I also found that the NBL model outperformed two reference models. The

fact that neither of these models performed at ceiling shows that the semantic role

assignment task was non-trivial and could not be solved using word identity or

input statistics. The NBL model performed significantly better than the back-off-N-

gram model which had perfect memory of lexical context. This shows that it can

generalize semantic roles from known lexical contexts to new contexts which the

back-off-N-gram model was unable to do. The NBL model also performed better

than the memory free readout which shows that the spiking network contributed

significantly to processing memory.

Overall, the findings in this chapter are similar to Fitz et al. (2020) but my

simulations used a different neuron model and method of input encoding. Instead of

leaky integrate-and-fire neurons with adaptive currents I used the AdEx neuron and a

spatio-temporal spike pattern as encoding scheme, in contrast to direct current input.

Despite these differences, the results found here are qualitatively the same as in Fitz

et al. (2020). However, they generally found higher performance than I report. This

aligns well with the difference in encoding strategies used. For instance, I showed

in chapter 3, that a stimulus-specific projection with direct currents, as used in Fitz

et al. (2020), results in improved memory and separability characteristics compared

to the spike pattern-based encoding I used here. Nevertheless, the similarity of both

sets of results supports their validity independent of the implementation details. In

particular, it supports the notion of an activity-silent processing memory as a viable

alternative to the persistent activity view when tested in the language domain.

The simulations did not include background activity and used noise-free input.

Furthermore, due to the network reset at the beginning of each sentence, there was no

influence of previous sentences on network activity. The only sources of variability
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were the input sentences themselves – each presented sentence was unique – the

random network connectivity and input spike patterns which were also randomly

generated. How much this noise-free environment contributed to high performance

remains to be tested. However, I showed in chapter 3 that with the encoding method

I used here, memory was also robust to noise. Spiking network simulations in the

computational neuroscience literature typically model random background activity

due to constant stimulation from external sources found in cortex (Litwin-Kumar

& Doiron, 2014; Duarte & Morrison, 2014; Zenke et al., 2015; Brette et al., 2007).

However, the random nature of such observed activity has also been contested (Brette,

2015a; Rieke & Warland, 1999). It is possible that this activity is not background noise

but provides contextual information to the processing network. In fact, on single

presentation of each input pattern, my encoding scheme is indistinguishable from

noise (see section 2.2.2). Thus, an expanded version of the model tested here, with

larger input patterns containing additional information, could be an appropriate

representation of a cortical network that receives background input.

Within the NBL model, I investigated sources of processing memory for ran-

domly connected spiking networks without synaptic plasticity. It is an open question

how this extends to more complex neuronal models and biological learning. We

know that biological neurons display a range of different dynamic processes that

continuously shape the neuron's behavior. However, given that the two temporally

extended processes I investigated here could both serve as a source of processing

memory, it is plausible to assume that other dynamical processes with long time

constants can similarly support memory. In biological neurons, different neuronal

processes build a spectrum over different time scales. Synaptic currents have time

constants ranging from 6 ms to more than 1000 ms (Gerstner et al., 2014). Synaptic

dynamics such as long-term potentiation and depression have time constants of tens

of seconds and longer (Zenke et al., 2015). Other processes such as synaptic tagging

(K. C. Martin & Kosik, 2002), protein synthesis (Fallon & Taylor, 2013) and synaptic

growth and pruning (Chechik et al., 1998) act on even longer time scales. These

processes can create a hierarchy of time scales supporting memory.

The activity-silent and the persistent activity view are not mutually exclusive.

Both could be active in parallel and complement each other to provide processing

memory. However, since I did not find a benefit of recurrent connectivity in randomly

connected networks, persistent activity based memory would require a particular

cortical connectivity structure. It is conceivable that such connectivity is generated

by incremental synaptic changes or developed during evolution. We know that each
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neuron class has a specific connectivity profile to other neuron classes (Markram et al.,

2015; Izhikevich & Edelman, 2008). With such connectivity, biological networks could

be suitable to store information through persistent activity by refreshing information

through cyclic chains of connections. What speaks against this is a consideration

of time scales. Information transfer between neurons is fast. For one neuron to

excite another can take between 1 ms and 20 ms (Markram et al., 2015; Izhikevich

& Edelman, 2008). Thus, to maintain information for the same period of time as a

neuron-internal dynamic process with a time constant of 200 to 1000 ms, up to 1000

consecutive neuronal spike interactions are required. Since neurons are rarely excited

by single spikes, the number of involved spike interactions would be even higher.

This makes it more resource intense to store information in persistent activity rather

than activity-silent processes – an option biology also provides.

In this study, I did not find a functional role of recurrent connectivity for memory.

However, recurrent connectivity is a prevalent feature in cortex and therefore likely to

serve an important role. What might explain this discrepancy is that recurrence might

be particularly important for learning and/or more advanced processing demands

beyond the current task. Biologically more plausible learning might be dependent

on local feedback provided by recurrent connectivity (Whittington & Bogacz, 2019).

Furthermore, it is plausible that recurrence is required to solve tasks that involve a

more complex nonlinear recombination of information than what I tested.

To process a sentence, it has been argued that the language system needs to

temporarily store information and flexibly retrieve it when needed (Gallistel & King,

2011; Graves et al., 2016). One way to conceptualize this is in terms of memory

registers that are accessed by independent read and write operations. The activity-

silent memory mechanism discussed here presents an alternative view of memory for

language processing. It relies on continuous reading and writing between different

dynamical processes (see also Petersson et al., 2008). The processes that act on longer

time scales serve as activity-silent memory registers that locally encode information

through spike generation. At the same time, these processes continuously influence

other dynamical processes acting on shorter time scales, such as the membrane state

and spiking activity. This can be viewed as a read-from-memory operation (see

Figure 4.7). Therefore, information in the membrane potential is locally encoded in

memory variables through spike generation. Those variables then again locally affect

the future state of the membrane potential. Conceptually, this read-write memory

is described by the coupled differential equations that characterize the neuronal
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Information storage: 
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Figure 4.7.: Illustration of memory encoding and retrieval cycles in the NBL model. Infor-
mation is processed by the membrane potential which can utilize both neuronal adaptation and
synaptic currents to store information. A change in the membrane potential can trigger spikes
which write information into both dynamic variables, w and I for storage. Those variables
in turn continuously influence the membrane potential u. Thus, information in the memory
variables is continuously read out and influences processing. Spike, voltage and current traces
at each of the arrows illustrate how the variable that is sending information can change the
state of the coupled variable. The processes on the left show writing/encoding through spikes
while the processes on the right are reading/retrieval operations.

dynamics. Continuous reading and writing might explain why the language system

can rapidly process sentences in an online, incremental manner.

In conclusion, my results show that the NBL model relies on a neuronal mecha-

nism for activity-silent processing memory. The way that dynamical variables interact

here to implement reading and writing arguably agrees more with the requirements

for sentence processing than a random access model. Such a neurocentric model of

processing memory supports a shift from abstract models of memory and sentence

processing towards models informed by neurobiological constraints.
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5The NBL model and human
sentence processing

5.1 Introduction
One purpose of a cognitive model of sentence processing is to explain aspects of

human sentence processing in mechanistic terms. It aims to show similar strengths,

weaknesses and processing effects as humans do when they process sentences (Demberg

& Keller, 2019). This distinguishes cognitive models from natural language models

and algorithms in computational linguistics. These are typically focused on ap-

plications, such as automatic speech recognition (Varga & Moore, 1990), question

answering (Ravichandran & Hovy, 2002), or statistical machine translation (Brown

et al., 1993), and try to eliminate shortcomings, regardless of whether these reflect

human language use. In contrast, the assumptions underlying a cognitive model

need to be tested by comparing model behavior to experimentally observed human

behavior. In this chapter, I will connect the NBL model to psycholinguistics and

evaluate it against the background of experimental results from human sentence

processing.

The NBL model has not been explicitly designed to reproduce human-like sen-

tence processing behavior. Rather, it is built to reflect important aspects of cortical

dynamics in a simulated network of spiking neurons. However, since the model

aims to capture critical features of the neurobiological infrastructure that performs

sentence processing in humans, one should expect some similarity in processing

behavior. In fact, if a neurobiological model would faithfully reflect neuronal activity

in the language network, with adequate models of neurons and their interaction, such

a model would exhibit the full range of human sentence processing ability. However,
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simulations at this level of detail are not yet feasible because, on the one hand, not

all relevant neurobiological details are understood and, on the other hand, it would

consume computational resources that are currently not available. Thus, I will inves-

tigate which aspects of human sentence processing behavior already emerge given

the level of detail simulated in the present NBL model. Unlike for a cognitive model,

I will not investigate cognitive mechanisms and modeling assumptions. Rather, I will

test the consequences of the neurophysiological data that informed the NBL model on

the example of sentence processing. This means I investigate the consequences of the

biological assumptions that went into the NBL model to the sentence processing be-

havior and what strengths and weaknesses readily emerge that are similar to human

sentence processing. Demberg and Keller (2019) identified a set of well-established

psycholinguistic effects that capture key characteristics of syntactic processing in

humans and argued that cognitive models of sentence processing should reflect these

properties. Below, I introduce a number of well established experimental findings

that are partially overlapping with the items in Demberg and Keller (2019). If the

NBL model is a useful first approximation of the neural infrastructure for sentence

processing, it should be able to reproduce at least some of these effects.

Sentence processing is fast, incremental and predictive

Humans process sentences incrementally and start constructing a sentence-level

interpretation while the utterance is still unfolding. This has been shown both in

behavioral (Marslen-Wilson, 1975; Marslen-Wilson & Tyler, 1980; Morris, 1994) and

electrophysiological studies (Kutas & Hillyard, 1980; van Petten, 1993; Kutas &

Federmeier, 2011). Each input word triggers an update of the partial interpretation

constructed thus far, and information is integrated as soon as it becomes available.

Processing is fast and reevaluation can occur several times during a sentence (Marslen-

Wilson, 1975). At the same time, during incremental processing predictions are made

about upcoming linguistic material. This has been shown in terms of reaction times

which become faster when a comprehender is confronted with predictable compared

to unpredictable input (Arnon & Snider, 2010; Traxler & Foss, 2000; see Kuperberg &

Jaeger, 2016 for a comprehensive review). These findings indicate that predictions are

made when possible and that these predictions can facilitate the processing of new

input. Kuperberg and Jaeger (2016) also analyze various notions of prediction used in

the literature and identify prediction in the minimal sense as “the context influences the

state of the language processing system before the bottom-up input is observed.” I

use this notion of prediction in this chapter.
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There is an ongoing discussion concerning the benefits of prediction and how

ubiquitous it is in language comprehension. Often, there are thousands of possible

sentence continuations, and therefore some have doubted that prediction is a worth-

while investment of resources (van Petten & Luka, 2012; Jackendoff, 2002). Others

have argued that, although prediction is observed in language processing, it may

not be fundamental to comprehension. For example, Huettig (2015) suggests that

prediction might only be relevant for learning, for some parts of language processing

or under particular conditions, for example for learning, or in conditions that are

particularly challenging for a listener. Another controversial issue concerns the nature

of predicted material. One perspective is that only a single prediction is made at any

given time, for example about the syntactic structure of a sentence. If this prediction

is disconfirmed, a full reanalysis is necessary. However, recent evidence suggests that

prediction might be a graded phenomenon, depending on how predictive the context

is. For instance, EEG studies have found that the size of the N400 effect, which is

evoked by unexpected words, depends on the level of surprisal of the incoming word

in relation to its linguistic context (DeLong et al., 2005; Frank et al., 2015; Nieuwland

et al., 2018). This suggests that the language system may predict several words in

parallel and that these predictions reflect a probability distribution over plausible con-

tinuations of a given sentence (Fitz & Chang, 2019). However, it remains a contentious

issue whether graded predictions are made in parallel or in a serial fashion where

only one prediction is made at any given time (van Gompel et al., 2005; Kuperberg &

Jaeger, 2016).

The garden path effect illustrates both fast, incremental processing and pre-

diction. Sentences eliciting garden path effects have been a cornerstone of sentence

processing research since Bever (1970). They are semantically and syntactically le-

gal sentences that are constructed to elicit a strong expectation in the reader while

the sentence is still unfolding (e.g., The experienced soldiers warned about the dangers

conducted the midnight raid). Later parts of the sentence violate this expectation and

require a reanalysis of the sentence.

Multiple sources of information are used in sentence interpretation

The information used to interpret sentences and predict upcoming linguistic material

does not come from a single source but instead originates from several different

linguistic features (Altmann & Mirković, 2009). For example, predictions are made

based on lexical semantics and sentence context (van Petten, 1993) as well as world

knowledge (Hagoort et al., 2004). There is an ongoing debate whether prediction is
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also based on lower-level linguistic features, such as phonology, morphology and

syntactic cues (DeLong et al., 2005; Altmann & Mirković, 2009) which has recently

been questioned (Nieuwland et al., 2018).

Similarly, the predictions that are made based on these cues affect multiple levels

of processing. For example, predictions can facilitate syntactic (E. Gibson & Wu, 2013)

and semantic processing (Kuperberg et al., 2011). Furthermore, predictions are made

about different grain sizes, ranging from specific words via semantics (Chambers

et al., 2002) to more coarse-grained semantic categories (Altmann & Kamide, 1999).

Predictions can also facilitate processing on higher levels such as event structure

and sentence structure to determine who did what to whom (Altmann & Kamide, 1999;

Kuperberg & Jaeger, 2016).

There does not seem to be a “level specific” prediction effect, for example that

phonological cues would only facilitate phonological processing (Jackendoff, 2007).

Rather, cues from any level can inform predictions and therefore facilitate other levels

of language processing. For example, contextual information, such as discourse and

world knowledge, can facilitate the processing of syntactic structure (E. Gibson & Wu,

2013).

Systematicity

Generalization is another important aspect of sentence processing. Hadley (1994)

uses “systematicity” as a technical term that refers to the ability to generalize from a

small and sparse training set to a larger set of unfamiliar sentences and constructions;

I will adopt this notion here.

Fodor and Pylyshyn (1988) criticized connectionist models by arguing that they

can not deal with the combinatorial syntax and semantics necessary for systematicity.

Hadley (1994) operationalized this criticism and distinguished weak and strong

systematicity (among others): A model exhibits weak systematicity if it can successfully

process sentences it has not seen before while it has seen all components (such as

nouns and verbs) of a sentence individually in each of their syntactic position. A

model exhibits strong systematicity if it (a) exhibits weak systematicity and (b) it

can additionally process sentences with components in syntactic position which the

model has not encountered before. This means the set of sentences with which the

model is trained excludes, for example, one particular noun from one particular

syntactic position. A model with strong systematicity would then be able to correctly

process that noun in that syntactic position. An extension, which may be implied

by Hadley's notion of strong systematicity, is that the model can infer properties of
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Figure 5.1.: Example of a full-sentence semantic role assignment plot. Illustration of se-
mantic role assignment to two noun phrases (NP) over the course of a sentence (not based on
simulated data). The upper and lower panels show the frequency of the respective roles for
the first noun phrase the cat and the second noun phrase a toy for the agent-patient transitive
construction at each position. The full bars mark the correct semantic roles while the hatched
ones indicate incorrect assignments. The sentence at the bottom is a representative of the
construction average displayed in the bar plots. In this example, the initial role assignment is
changing due to accumulating evidence from noun and verb identity.

novel words from context. This would correspond to the human capacity to infer

syntactic and semantic properties of unfamiliar (pseudo)words from context (Berko,

1958). Hadley's analysis sparked a series of papers investigating the systematicity

of connectionist models, aiming to demonstrate strong systematicity at least under

certain conditions (Christiansen & Chater, 1994; Hadley et al., 2001; Frank, 2006; Fitz

& Chang, 2009). How this notion of systematicity relates to the human capacity to

generalize in language is still unresolved (Calvo & Symons, 2014).

5.1.1 Full-sentence semantic role assignment
To compare the NBL model to human sentence processing, I calibrated the readout

on input sentences from the English-like language described in section 2.3 and as-

sessed the model's ability to assign semantic roles. Semantic roles provide a shallow

sentence-level interpretation (Jackendoff, 1992). They differ from syntactic depen-

dency relations in that the roles are insensitive to syntactic alternations and describe

the event structure related to an action. To observe how the interpretation of a sen-

tence is changing while the sentence unfolds, I read out the semantic roles of all noun

phrases after the presentation of each word (see Figure 5.1). This full-sentence semantic

role labeling differs from the task used in chapter 4 where a semantic role was only
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assigned to the currently presented word. Here, already in the early stages of each

sentence, the NBL model provides an assessment of the semantic structure of the

entire sentence. Thus, it needs to predict the roles of the upcoming noun phrases and

determine “who did what to whom” using the available information. To do this, the

model needs to constantly integrate the information from new words and update its

semantic role assignments for the whole sentence. Furthermore, previous information

relevant for semantic role assignment at a later stage needs to be retained by the

network itself as there is no external memory. I implemented this task using parallel

readouts, one dedicated for each noun phrase of the sentence. These readouts are

trained independently of the other readouts. As previously, each readout had access

to the activity of the whole network in the NBL model.

5.1.2 This study
I used this predictive, incremental task to test how well the model could interpret

sentences in terms of semantic roles and resolve temporary ambiguities over time. I

also tested whether the model could use multiple semantic and syntactic constraints

to arrive at the correct sentence interpretation. Finally, I tested the systematicity of the

model, i.e., whether it could infer semantic roles of familiar words in a novel context

and whether it could infer semantic roles of completely novel words from context.

5.2 Methods
I simulated the NBL model as described in chapter 2, informed by the insights from

chapters 3 and 4. Table 5.1 displays the model parameters that I used here that diverge

from the general description.

Variable Value Description
τw 200 ms neuronal adaptation time con-

stant
τsyn 500 ms synaptic current time constant
ρc 5% network connection density
ftunen 5 Hz network target spike rate
ntrain 160 000 words ≈ 18 000 sentences training set size
ntest 20 000 words ≈ 2200 sentences testing set size

Table 5.1.: Parameter values used in this chapter.
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The training set was larger than in previous chapters. This was necessary

because semantic role assignment to whole sentences was more difficult than previous

tasks. Note, however, that the number of training items was still less than 0.000005%

of all possible sentences generated by the language.

5.2.1 Readout calibration
Since the tested sentences could have up to three noun phrases, I used three inde-

pendent, parallel readouts that were trained on the same network state collection

but had different target outputs. Each readout mapped onto the semantic role of

one noun phrase in the input sentences. For sentences with fewer than three noun

phrases, the target for the redundant roles was NONE. For example, in an intransitive

sentence like The cat sleeps with only one noun phrase, the second and third semantic

role targets were NP2:NONE, NP3:NONE. Where indicated, readout performances

were kappa corrected (see mathematical glossary, section 2.4).

5.2.2 Input language
The input language (section 2.3) was modified slightly. First, the distinction between

past participle -edpar and the past tense marker -ed was removed such that passives

and past tense verb forms were indistinguishable (both used -ed). This allowed me

to investigate sentences with temporary ambiguity in section 5.3.3. Secondly, to test

systematicity in the NBL model, I excluded sentences with selected words from the

training set and only allowed them in the testing set. This concerned three nouns

from the LIVING category and three nouns from the OBJECT category. For one

noun of both categories, each sentence that contained either was removed from the

training set. These two nouns were used to test systematicity on novel words. For the

other four nouns, sentences containing them were only removed if they belonged

to specific constructions to test systematicity on familiar words in novel contexts; see

Table 5.2 for examples. Sentences with one noun from LIVING were removed if they

were passive agent-patient transitives (with either constraining or unconstraining

beginning or with an instrumental prepositional phrase). Sentences with one noun

from OBJECT were removed if they were active agent-patient transitives. Similarly,

sentences with one noun from LIVING were removed if they were active theme-

experiencer constructions and sentences with one noun from OBJECT were removed

if they were passive theme-experiencer constructions. In each case, the sentences that

were removed had the novel word in the second noun phrase. This ensured that there
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Noun
category

Example
noun

Constructions
removed

Example sentence

LIVING man all removed: The man chases the orange.
removed: The orange hurts the man.

OBJECT ball all removed: The boy chases the ball.
removed: The ball hurts the boy.

LIVING woman agent-patient
transitive passive

removed: The orange is chased by the woman.
included: The woman chases the orange.

OBJECT toy agent-patient
transitive active

removed: The boy chases the toy.
included: The toy is chased by the boy.

LIVING girl theme-experiencer
transitive active

removed: The toy hurts the girl.
included: The girl is hurt by the toy.

OBJECT apple theme-experiencer
transitive passive

removed: The boy is hurt by the apple.
included: The apple hurts the boy.

Table 5.2.: Examples of nouns that were omitted in the training set and the corresponding
constructions to test systematicity. Constructions with any of six selected nouns were removed
from the training set. The Table shows the respective noun category with an example noun
and the name of the construction that was removed if it contained the noun. On the right are
examples of sentences that would be removed or included in the training set.

was sufficient contextual information available for the model to assign the correct

semantic role. For the constructions investigated, the semantic role of the second

noun phrase was always fully determined by the preceding context.

5.2.3 Explanation of stacked bar plots
To visualize how full-sentence semantic role assignment changed over time, I use

stacked bar plots. These plots show the percentages of roles assigned to all sentences

of the same construction type in the test set (y-axis) for each sentence position (x-axis).

The construction type is indicated on top of each plot. Percentages were averaged

over ten model subjects with different random connectivity, training and test sets,

and different input spike patterns. To improve readability, error bars were omitted.

The color of each bar indicates the assigned role according to the legend, and colors

were kept consistent across plots. The solid colors mark the correct roles, the hatched

ones mark incorrect assignments.

Since parallel readouts were used, there are three semantic roles assigned at

each position – one for each noun phrase in the sentence. For Figure 5.6, I only

selected the readout for the relevant noun phrase, but the complete plots for all noun

phrases are included in the appendix.

Figures 5.3 and 5.5 show the same role assignments, however, the x-axis does

not mark sentence positions, but the positions of a specific word category within

92 Chapter 5 The NBL model and human sentence processing



sentences of the construction type. The example word on the axis label is one rep-

resentative of this category. Figures 5.4 and 5.6 mark the sentence positions on the

x-axis. However, since the language was designed to reflect aspects of the variability

in human language, the same position in different sentences of a construction type

can be occupied by words of different classes. For example, for the double object

dative in Figure 5.4A, one of the shortest possible sentences is Girl -s give man -s book

-s with 7 words. Here, I consider suffixes such as -s and -ing as separate words. The

noun positions are 1, 4 and 6 and the verb position is 3. One of the longest possible

sentences from this construction is The young girl -s were give -ing the old man -s the big

book -s with 15 words. The noun positions are 3, 10 and 14 and the verb position is 6.

Thus, information available at a given position can differ between sentences of the

same construction type. Averaging for each position has the effect that plotted role

assignments change gradually because the disambiguating cue can occur at different

positions. Since long sentences were less frequent, there are less data points for the

later positions in each construction. The plots therefore omit positions that cover less

than 10% of the data compared to the initial position.

Underneath the bar plots, I give an example that fits the number of plotted

words, that is, a sentence that is as long or longer than 90% of the tested sentences of

a construction type but shorter than 10% of the sentences of this construction. The

noun phrases in these examples are colored according to the correct semantic role for

this noun phrase.

5.2.4 Estimating maximal performance
Early in sentences, semantic role assignment was not deterministic since the available

information typically was not sufficient to disambiguate the sentence. In light of this

temporary ambiguity, I estimated the best possible performance on each position for

a given training set. First, I collected all sentence prefixes up to this position from

the training set and replaced each word by its category label. I then determined

the maximum performance at a sentence position to be the frequency of the most

common semantic role for its prefix. Maximum performance for this position was

then estimated as the average over all sentence prefixes, weighted by the number of

occurrences of each prefix. Tables 5.3 shows an example in a simplified language. The

left Table shows a set of sentences with the correct semantic roles for the first noun

phrase. It shows the prefixes of length 2 and the corresponding reduced prefix given

the noun categories as described in 2.3. The right Table shows how the maximum

possible performance given a reduced prefix can be less than 100% in case of ambiguity.
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sentence correct
role

prefix(2) reduced
prefix(2)

the girl sleeps AGENT the girl the girl
a cat sleeps AGENT a cat the cat
a dog sleeps AGENT a dog the cat
the cat falls PATIENT the cat the cat
a ball falls PATIENT a ball the ball

reduced
prefix(2)

# AG PAT max %
prefix

the girl 1 100% 0% 100%
the cat 3 66% 33% 66%
the ball 1 0% 100% 100%
max est. 2·100%+3·66%

5 = 80%

Table 5.3.: Simplified example for determining maximum performance estimate. The left
Table shows all sentences in a toy language with the correctly assigned semantic role, the
sentence prefixes for position 2 and the prefixes with reduced lexical variability in position 2.
Here cat and dog are in the same noun category while girl and ball are in different categories.
The right Table shows the number of sentences (#) corresponding to each reduced prefix, the
percentage of correct roles and the resulting maximum percentage of correct assignments for
this prefix (AG=AGENT, PAT=PATIENT). Below, max est. indicates the maximum performance
estimate for position 2 weighted over all prefixes.

The maximum performance for position 2 is then determined by a weighted average.

Note that this estimate of maximum performance is optimistic. The actual

performance that the NBL model can reach given the input is smaller than this

estimate. I assumed correct identification of all word categories in the language and

available statistics over a set of sentences with known semantic roles. The NBL model

however, was tested on novel sentences with prefixes that it had not necessarily

encountered in the training set which means that the statistics over the prefixes were

not always known. Furthermore, the estimate is position-specific, that is, it allows

independent weighting of cues for each position in the sentence. The NBL model, in

contrast, does not change its readout weights depending on the sentence position.

Thus, it cannot use cues differentially in different parts of a sentence but has to use

a readout that fits all sentence positions. Nevertheless, the estimate is closer to the

expected performance than assuming that 100% performance is possible at each

sentence position. For example, the estimate can be as low as 38% for the first position

of the second noun phrase readout.

5.3 Results

5.3.1 Performance of NBL model and benchmark model
Figure 5.2 shows the performance overall and by word position for each noun phrase.

All the performances were kappa corrected (see section 2.4), i.e., the raw model

performance was projected into an interval between the performance of a random
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Figure 5.2.: Semantic role assignment, overall and by sentence position. Performance of
the NBL model and the memory-free readout overall (left) and for each sentence position (right)
on each noun phrase (NP). For all three noun phrases, the overall performance of the NBL
model is significantly above that of the memory-free readout. However, early in sentences,
the latter can perform better. Late in sentences, the performance of the NBL model declined,
indicating a limited memory span. Late sentence positions that occurred in less than 2% of all
sentences are not shown. Error bars show 95% confidence intervals.

classifier (interpreted as 0%) and the maximum estimate (set to 100%). To put the

NBL model in context, it was again compared to a memory-free readout model, where

the regression is directly applied to the input sequences. This readout has no memory

since it operates on the current input word only. Therefore, the memory-free model

shows how well the semantic roles can be inferred from lexical information alone.

The difference between the two models shows how much memory the neural network

of the NBL model contributes to solving the task.

I tested for differences between models without kappa correction using a paired-

samples t-test and found significant differences for each NP (each t(9)>23, p<0.001).

Thus, the overall performance of the NBL model was higher than that of the memory-

free readout for all three NPs. I also tested the NBL model compared to the random

classifier and found significant differences for all three NPs (each t(9)>144, p<0.001).

The right panels of figure 5.2 show that early in sentences, the NBL model was
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closer to the memory-free readout than towards the end. This is explained by the

fact that the sentence-initial roles are not as dependent on past information as the

later ones. Furthermore, the memory-free readout dropped below chance level for

late words in the NP3 readout. This may be because the readouts were trained

over all words, not by sentence position, and it seems that the memory-free readout

optimized towards good performance in early words while sacrificing performance

on late words. Overall, however, the memory-free readout was above chance level.

In the NBL model, performance was declining towards late positions for NP1 and

NP2 even though these semantic roles became increasingly better determined by

previously received information. This suggests that network memory could not

maintain relevant information sufficiently long and traces began to decay towards

the end of sentences. This behavior was not observed for the NP3 readout where the

correct assignment often depended on information occurring late in the sentence.

5.3.2 Context-dependent processing
Words are typically not processed in isolation but embedded in sentence or discourse

context. Likewise, words only assume semantic roles in the context of other words.

This was also the case in the language used here. For example, nouns such as man

could occur in the same syntactic role in a passive agent-patient transitive, an active

theme-experiencer transitive or a double object dative, but assume different semantic

roles in each case (see Figure 5.3 B, C, and D). In the first construction, its semantic

role was AGENT, in the second it was EXPERIENCER and in the third case, it was the

RECIPIENT. This information could not be extracted from the word man itself but

the linguistic context was required to assign the correct semantic role. The context

that was provided in this example was both the verb identity and auxiliaries marking

passive voice. Figure 5.3 shows that the NBL model was able to integrate these

different linguistic cues and it assigned the correct semantic role in 98±4% (B), 89±3%

(C) and 54±2% (D) of the cases.

The full-sentence semantic role assignment required noun phrase specific read-

outs that were independent from each other. Since most nouns could occur in different

noun phrases, the readout for the first noun phrase, for example, could not rely on

the mere existence of an input such as man but it also had to evaluate if the noun had

occurred in the first noun phrase. Figure 5.3A and B shows that this is done correctly

in the NBL model on the example of active and passive transitive constructions. For

the active transitive, the readout for the first noun phrase identifies the semantic

role of man while for the passive transitive it identifies the semantic role of ball. The
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Figure 5.3.: Semantic role assignment is dependent on context. The same noun man assumes
three different semantic roles in four distinct constructions. Solid bars show that these roles
were mostly assigned correctly in each case, during the presentation of the word itself, based
on contextual information. Mean frequencies over ten model subjects are shown, error bars
were omitted.

reverse is true for the second noun phrase readout. Both assign the correct role to man

in 89±3% and 98±4% of the cases, respectively.

5.3.3 Incremental integration and prediction
Sentence processing proceeds incrementally as comprehenders do not wait for the end

of an utterance but adopt a partial interpretation based on the available information.

New words can trigger an update or revision of the interpretation constructed thus

far. At the same time, the language system makes predictions about upcoming words

and sentence structure. I tested whether the NBL model was able to incrementally

revise its interpretation of an unfolding utterance.

In Figure 5.4, the semantic role assignment to three NPs is shown for two of

the dative constructions used in the input language. Panel 5.4A shows that evidence

for a particular interpretation was accumulating over time. Eventually, the readout

settled on RECIPIENT for the second NP and on THEME for the third NP. I will use the
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Figure 5.4.: Incremental and predictive role assignment. Semantic role labeling for the two
dative constructions that can only be distinguished after the verb. Each panel displays the
mean frequencies of semantic roles assigned per sentence position in the two constructions
(ten model subjects). Error bars omitted.
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shorthand notation NP2:RECIPIENT, NP3:THEME, etc. to describe this assignment.

Early in the sentences, several different roles were assigned to NP2 and NP3 before the

presentation of the verb give (2nd to 6th position). In the input language, give belongs

to the DATIVE verb category that was only used in the two dative constructions

shown in Figure 5.4. The semantic roles for NP2 and NP3 are flipped in the dative

alternation; for the double object, NP2:RECIPIENT and NP3:THEME, but NP2:THEME

and NP3:RECIPIENT for the prepositional dative. In both constructions, the semantic

roles projected by the readout after the verb are reduced to the two options THEME and

RECIPIENT. The distinction between the constructions can only be made later based

on the animacy of NP2 and the occurrence of the preposition to. This happens around

the 7th position where the correct role assignment is becoming dominant for each case.

This behavior shows both incremental processing and that predictions are made by

the NBL model. First, the identity of the verb limits the plausible interpretations and

the decision between these two interpretations is made when the relevant information

becomes available. Due to the task design, the NBL model also predicts possible

sentence continuations at the verb. The proportion of roles for NP2 and NP3 from the

6th position on-wards (the latest point when the verb can occur) that was not either

RECIPIENT or THEME was smaller than 15% in each construction. Towards the end of

the sentence, when the construction is completely disambiguated, performance was

above 80%. The plots also show that relevant information was maintained throughout

the whole sentence. In Figure 5.4A, the first word was assigned the AGENT role. This

is because it is the most common semantic role of the first NP, reflecting an agent-first

bias in English. This assignment is confirmed later by new input and therefore is

maintained throughout the sentence which requires processing memory. This memory

was provided by neuronal adaptation in the spiking network (see chapter 4).

To further investigate ambiguity resolution, I tested the NBL model on items

that required reanalysis late in the sentence. For this, I used sentences that initially

triggered the NP1:AGENT, NP2:PATIENT role assignment, which later had to be

revised towards NP1:PATIENT, NP2:AGENT with accumulating information. These

sentences are similar to garden-path sentences. To test this, I introduced a construction

during testing that did not occur in the training set. Sentences from this construction

had a semantically unconstraining initial segment (see section 2.3) and were ambigu-

ous between past tense and participle forms of verbs. The examples below show two

sentences from the model 's input language, (A) and (C), and the newly introduced

form (B) for testing.
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Figure 5.5.: Reanalysis of semantic roles in ambiguous sentences. Role assignment on NP2
of three constructions that correspond to the example sentences (A), (B) and (C) in the main text.
The bar plots are normalized on words class, not on sentence position, that is, cat marks the
readout on the first noun, was the readout on the auxiliary verb, chase the readout on the verb,
etc. Empty slots indicate that this position did not exist in a given construction. In panels B and
C, there was no auxiliary verb, in panel C, there was no by before NP2. Other words (adjectives,
determiners, etc.) were excluded in this plot. In panel B, the word by elicits a reanalysis of the
sentence. Prior to that, roles are similar to panel C, afterwards, they are similar to panel A.

(A) The cat was chase -ed by the man.

(B ) The cat chase -ed by the man was big.

(C) The cat chase -ed the ball.

Sentence (B) has the same prefix as (C), so the two are indistinguishable up to the

4th position. Figure 5.5 shows the semantic roles assigned to NP2 in the different

constructions where the panel label corresponds to examples (A), (B) and (C). The

roles assigned in panels B and C are similar at the initial noun, verb and suffix -ed. For

the construction in panel B, the AGENT role changes from 9±1% to 88±1% when by is

presented. This constitutes a reevaluation of the sentence. The incorrect assignment

preceding by is changed to the correct role. In panel A the assignment of AGENT to

NP2 is triggered by the auxiliary in combination with verb identity and suffix.
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5.3.4 Role assignment informed by semantic constraints
Comprehension uses different sources of information to interpret a sentence, including

syntactic cues, semantic constraints such as lexical meaning, and world knowledge

(Kuperberg & Jaeger, 2016). To test whether the NBL model could also integrate

different sources of information, I used semantic constraints which were expressed as

distributional properties of the language. The question was whether these constraints

would facilitate sentence-level interpretation. I changed the input language such that

there was a pair of constructions that only differed in how semantically constraining

the first noun was. Semantically constraining means that a noun is clearly identifiable

as animate or inanimate. An animate noun, such as woman, implies agency while an

inanimate noun, such as ball, excludes agency. In the construction with a semantically

unconstraining beginning, the first noun was instantiated from a word category that

contained both animate and inanimate objects and therefore was less semantically

constraining. It could both be the agent of an action or an object that an action was

performed on. I here use pets to illustrate these unconstraining nouns. For example,

both sentences He gives the cat to her. and The cat chases the toy. were possible while

only one instance of each was possible for semantically constraining nouns.

Figure 5.6 shows semantic role assignment on NP1 for both these constructions.

The constraining beginning lead to the correct assignment NP1:PATIENT with 84±1%

performance at the second position (subject noun). In contrast to that, role assignment

on the subject noun with an unconstraining beginning was only correct in 31±1% of

the cases. Using paired-samples t-tests to compare both constructions by position, I

found a significant difference in performance for the first 5 positions (each t(9)>3.6,

p<0.01) while there was no significant difference for later positions (each t(9)<0.75,

p>0.4). Since the sentences from each construction were variable in length, the

positions of the subject noun and the verb were also variable. The difference in

performance for the first 5 positions corresponded to the fact that the verb could

not occur later than in the 6th position. Thus, verb identity provided the relevant

semantic information for the sentences with unconstraining beginning that was

otherwise provided by the animacy of the subject noun.

5.3.5 Systematicity
Since natural language syntax is productive, listeners need to be able to process

familiar words within novel contexts. Conversely, the semantic roles of novel words

can often be inferred from familiar contexts (e.g., He kicked the wug). This ability to
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Figure 5.6.: Semantic constraints facilitate early sentence interpretation. Panels A and B
show role assignments on two constructions that differed in how semantically constraining the
first noun was. In panel A, the first noun is constraining (inanimate object) while in panel B, it
is unconstraining. Shown are the mean frequencies of semantic roles assigned per sentence
position. Error bars omitted but were never larger than 2%.

generalize beyond experience has been labeled systematicity (Hadley, 1994). In this

section investigated the degree of systematicity in the NBL model. It is important

to note that the spike patterns that were encoding word input to the network were

random and unstructured. Thus, the noun cat was as similar to the word mouse as

it was to by, big, jump or the. Consequently, there was no shared feature structure

between semantically similar nouns, or between familiar and novel nouns, that could

be exploited in the semantic role assignment task. The roles of novel nouns and of

familiar nouns in novel contexts had to be inferred from the linguistic context itself.

Also, note that adjectives in the input language were not predictive of specific roles,

that is, they could not be used to infer the semantic role of a novel noun.

The above-chance performance in section 5.3.1 already shows that the NBL

model satisfies weak systematicity because it correctly assigned semantic roles to

sentences it was not exposed to during the training phase. The input language to

the model could generate around 4 · 1011 distinct utterances, and hence the 1.8 · 104

sentences used for training constituted less than 0.00005% of the total language.

Furthermore, the test set only contained novel sentences that were not included

in the training set, which is the decisive criterion for weak systematicity (Hadley,

1994). To go beyond this, I explicitly tested stronger forms of systematicity. For four

constructions, I excluded sentences with one specific noun from the training. Also,

102 Chapter 5 The NBL model and human sentence processing



  0%

 20%

 40%

 60%

 80%

100%

Pe
rfo

rm
an

ce
 o

f f
am

ilia
r w

or
ds

novel context
novel word

Figure 5.7.: Generalization to novel words and novel contexts. Performance is corrected
such that the NBL model performance on a familiar noun in a familiar context is at 100% and a
random classifier is at 0%. The novel context condition shows generalization of a familiar word
into a novel context. The novel word condition shows generalization to entirely novel words.
Error bars show 95% confidence intervals.

other sentences where this noun could occur in the same syntactic position occupying

the same semantic role were excluded. For instance, if agent-patient transitives with

the word ball as object were excluded, such as The boy hits the ball., I also excluded

The boy hits the ball with a stick. Since the noun ball was still used in other sentences, it

was familiar to the network but would be tested in a novel context (see section 5.2.2

for details). For two other nouns, I excluded all sentences with these nouns from the

training input. When tested, these were novel words that the network had not been

exposed to before. In testing, I included all combinations of nouns and constructions.

This allowed me to test how well the NBL model assigned semantic roles in two

conditions requiring generalization: (a) familiar words in novel contexts and (b) novel

words. Figure 5.7 shows the performance in both conditions, projected to between the

performance on a familiar word and a random classifier. With this correction, I found

that performance in novel contexts was at 77±7% and novel words were at 66±16%

Using paired-samples t-tests, I tested whether the NBL model performed better than

chance. For the novel context condition, I found a significantly higher (uncorrected)

performance of 80±5% compared to random baseline with 13±0% (t(9)=26, p<0.001).

Similarly, for the novel word condition, I found a significantly higher (uncorrected)

performance of 70±14% compared to the same random baseline (t(9)=8, p<0.001).

I did not find a significant difference between the two conditions (t(9)=1.7, p=0.12).
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These results suggest that the NBL model generalized equally well in both cases, from

familiar to novel words and from familiar to novel contexts.

5.4 Discussion
In this study, I found that the NBL model shows a number of characteristics typical

of human sentence processing. Words are processed within their sentence context,

sentences are processed incrementally, and new information is integrated with exist-

ing information. This information is then used to predict the semantic properties of

upcoming input. I also found that syntactic cues and semantic constraints were both

used concurrently to identify semantic relations between words. When faced with

temporary ambiguities, the model assigned semantic roles based on the available cues

until new evidence was presented and the interpretation had to be revised. Finally,

I found that it exhibited some level of systematicity. It showed weak systematicity

since the tested sentences were distinct from the sentences the model was trained on.

It also showed a stronger form of systematicity since correct semantic role assignment

to familiar words in a novel context, and to entirely novel words, was significantly

above chance. These results show, that the level of biological plausibility in the NBL

model was sufficient to display a series of cognitively relevant processing features.

Some of these effects have also been obtained in cognitive models of sentence

processing before, for example in the Sentence Gestalt model (St. John & McClelland,

1990). This model used an artificial neural network with an input, a hidden and

an output layer, where the weights between the nodes were learned through back-

propagation in order to assign semantic roles to sentence constituents exploiting both

semantic and syntactic constraints. However, the language corpora used in this work

contained less than 3000 distinct utterances and the models were trained on 100 000 to

700 000 items. Thus, the ratio of training size to the number of possible utterances

was at least 30. In the NBL modelsimulations, I used a language that generated

orders of magnitude more distinct utterances and a smaller training set, such that the

ratio of trained to possible utterances was less than 10−7. This illustrates the strong

generalization capabilities of the NBL model. St. John and McClelland (1990) also

showed that the Sentence Gestalt model could generalize to new sentences but they

did not test on known words in novel syntactic positions or on novel words (see also

Hadley, 1994). Furthermore, their network received event structure as input and

target semantic features in training, both of which are not present in spoken or written

language, and this was not the case in our simulations. However, the main novelty
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of the NBL model is that it maps neuronal activity and information processing to a

higher degree of biological plausibility and still produces these sentence processing

effects. The Sentence Gestalt model used simple rate nodes that were updated in

discrete time, while the NBL model implements neuronal and synaptic dynamics in

continuous, physical time.

In the introduction of this chapter, I described a set of key features – partially

overlapping with Demberg and Keller (2019) – that I tested the NBL model against.

Here, I discuss the features from Demberg and Keller (2019) that I did not test and how

they relate to the NBL model. They identified four other properties of human sentence

processing that cognitive models should reflect. First, (i) processing is fast and robust

against grammatical errors and (ii) processing has broad coverage, in other words, it

can deal with a variety of syntactic constructions and is not restricted to a particular

domain or input modality. Furthermore, they argue that (iii) while a sentence is being

processed, words are attached to the same syntactic structure instead of unconnected

fragments, and this is referred to as connectedness (Sturt & Lombardo, 2005). Last,

(iv) the processor operates with limited memory such that there is a distance-based

processing cost. While I did not explicitly test these properties, my findings are

not in conflict with them. By design, processing in the NBL model is fast since the

readout is done immediately after a word has been presented. The language used

here had a variety of different constructions with syntactic alternations, but it remains

to be tested how the model deals with a more complex grammar (e.g., embedded

clauses). Similarly, it would be an interesting extension of this research to test how

the model can work across domains and input modalities. To test connectedness in

the model, a formal description and a suitable readout would have to be developed.

Finally, I found that the NBL model operates with limited memory determined by

the parameters chosen, as shown in chapters 3 and 4, that is, there is a distance-based

processing cost. In section 5.3.1 I found that performance declined for later sentence

positions. This suggests that early information was not maintained long enough to

always yield high performance.

As mentioned in the introduction, I used “prediction” in the minimal sense that

the state of the processor is influenced by context such that information about an

upcoming item is implicitly available before the actual input (Kuperberg & Jaeger,

2016). The predictions made by the NBL model are graded rather than all-or-nothing

predictions. For example, in Figure 5.4, similar sentence prefixes from two equally

likely constructions elicited two possible predictive interpretations roughly half of

the time. This was the case even though, for each word in a sentence, I used a
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winner-takes-all selection criterion and only chose the most active prediction. Across

all sentences of a construction, however, there was a gradual change of prediction

which indicates that for local ambiguity each sentence prefix triggered multiple

interpretations. The correct role assignment was then determined by the concrete

words in a given example. Importantly, in the NBL model, “predictions” about past or

future items are made using the same mechanism. The readout assigns semantic roles

to noun phrases independently of whether they are still upcoming or whether new

information causes a reevaluation of previous noun phrases. It is conceivable that the

human language system uses a similar mechanism to generate implicit predictions

about upcoming input but also uses this mechanism to reevaluate past input in light

of new, disambiguating information. The NBL model is able to integrate different

sources of information in sequential processing to inform semantic role assignment,

for example, word identity, morphosyntax, serial order, distributional semantics, et

cetera, and this did not require specialized mechanisms to cope with different types

of cues. All this information was continuously folded into the network in a state-

dependent manner and from this state semantic relations could be inferred reliably.

This is in agreement with experimental findings that human sentence processing

integrates linguistic information from different levels to inform different levels of

processing. Hagoort et al. (2004) found that it is not necessarily possible to distinguish

the different processes responsible for the integration using neuroimaging methods.

The forms of systematicity investigated in this chapter are not a full exploration

but still serve as an indicator of the potential of the NBL model. For instance, I

did not test systematicity in terms of generalization to embedded clauses, as was

required by Hadley (1994). However, according to Hadley, even for single-clause

utterances most connectionist models fail to exhibit strong systematicity unless they

make strong assumptions. In particular, he criticized models that rely on shared

features between familiar and novel words to facilitate generalization. Furthermore,

the models discussed by Hadley used a large training set compared to the number

of distinct utterances their language could produce. Thus, systematicity in connec-

tionist models remains a contentious issue (Frank, 2006). In my study, words were

represented as random spike patterns, frozen noise generated by a series of Poisson

processes, and these words did not share features in a systematic fashion. In training

I only used a small set of sentences compared to the number of possible utterances

that the input language could generate. Hence, for single-clause utterances, the NBL

model exhibited a strong level of systematicity. The architecture for which strong

systematicity has been shown, and which is most similar to the NBL model , is the
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echo state network (Frank, 2006). Similar to my model, they used a static recurrent

network in conjunction with a trained readout, however, they did not use spiking

neurons or spike-pattern input.

In conclusion, I found that our current understanding of biological neurons and

the ability to simulate spiking networks computationally is sufficient to connect to

cognitively relevant aspects of language processing. Thus, a point has been reached

where computational neuroscience, which has been investigating neural processing

and circuit dynamics for decades, can be integrated with the cognitive sciences in a

manner that is beneficial to both fields and mutually facilitates research progress.

5A Appendix
In the results section of this chapter, I only discussed a selection of sentence con-

structions from the input language. For transparency, I append the complete role

assignment plots for all of the constructions.
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6Binding in the NBL model

6.1 Introduction
The binding problem in its general form is concerned with the question how distinct

pieces of information are combined and integrated by the brain such that a limited

number of conceptual primitives stored in our memory can be used to represent and

understand the possible states of our environment. Feldman (2013) distinguishes four

problems from different fields of cognitive science that all are referred to as “binding

problem” but are distinct and should be studied separately; general coordination,

unity of perception, visual feature-binding, and variable binding. Of these versions,

variable binding is the most relevant for language processing and this will be my

focus. Importantly, the term “problem” does not describe a problem for the brain

but the fact that it is scientifically not well-understood how binding is accomplished

(Feldman, 2013).

Binding in language processing is a pervasive phenomenon that occurs at

different linguistic levels. Jackendoff describes this as the “massiveness of the binding

problem” (Jackendoff, 2002). For example, when processing a spoken utterance, in

order to integrate the phonological, syntactic and semantic structure, it is necessary to

temporarily store the syntactic relationships between each sentence constituent and

to connect the speech sounds to conceptual representations. In a sentence like The

black cat is chasing the red toy, binding between nouns and semantic roles is required to

comprehend cat as AGENT and toy as PATIENT. Furthermore, binding between nouns

and modifying adjectives marks the cat as black and the toy as red instead of the

other way around. These are just a few of the binding relations necessary to interpret

a sentence correctly. In a sentence of similar complexity, Jackendoff (2002) identified

upwards of a hundred binding operations required for a full analysis.
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The binding problem has been intensely debated in relation to cognitive models

of language processing. That is because with traditional connectionist models it

is difficult to implement and explain binding as described above and it has been

suggested to be a fundamental shortcoming compared to symbolic models of language

processing (Fodor & Pylyshyn, 1988). Symbolic models use variables that can be freely

manipulated and combined using mathematical and logical operations. In contrast to

that, connectionist models represent information as distributions of network activity

which are processed through the interaction of the nodes. The difficulty to represent

binding relations led some to conclude that they are ill-suited for modeling language

processing (Fodor & Pylyshyn, 1988; Jackendoff, 2002). However, it is a fact that the

brain, which in a broad sense functions like a connectionist network, is able to solve

the binding problem. In the words of Pulvermüller (2010):

“This critique seems, however, to be aimed at neural networks of a certain

kind. Applied to the brain itself, it would lead to the apparent paradox

that the language organ of humans cannot process human language – an

irrational position.”

In response, Hummel (2011) identified three coping mechanisms that he observed:

(i) argue that mental representations are symbolic, ignoring or down-playing the

undisputed non-symbolic character of the neural infrastructure, (ii) argue that mental

representations are non-symbolic, omitting the evidence for relational representations

necessary for human reasoning, or (iii) attempt to bridge the gap between connec-

tionist and symbolic models by specifying what is necessary to enable connectionism

to solve the binding problem (see, e.g., Fitz & Chang, 2009). I take the latter stance

and investigate what kind of binding operations can be performed with the NBL

model. However, first I review the mechanisms for binding that have been proposed

by connectionist models.

6.1.1 Connectionist approaches to solve the binding problem
Broadly speaking, there are four approaches to address the binding problem in

connectionism (Sougné, 2006; Hummel, 2011). Two of them have obvious issues and

are mentioned here only to further illustrate the problem while the other two are

promising proposals that continue to be investigated. To describe these approaches,

I distinguish between primitive and composed concepts. A primitive is whatever is

stored in long-term memory and the smallest unit of information in a connectionist

model, for example a single activated node. A composed concept is not stored in long-
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Conjunctive 
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Dynamic 
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Figure 6.1.: Connectionist approaches to the binding problem. The columns illustrate the
four approaches described in the main text. For each, the representation of composed concepts
corresponding to the utterance on the left is shown. The third row displays representations of
utterances that contain two distinct composed concepts. When primitives repeat, the problem
of 2 occurs, and this is shown in the fourth row. Note that the representations for the bottom
two items in the fundamental primitives column do not allow unambiguous reconstruction of
the input.

term memory; its representation requires a combination of primitives, for example

by activating several primitive nodes simultaneously. Examples of the four different

approaches to binding are shown in Figure 6.1.

(1) Use fundamental primitives, that is, separate and independent nodes for each

conceptual feature, such as “black”, “red”, and “cat”. This allows using a small

set of primitives that can be flexibly combined into composed concepts such as

“black cat” and “red box” by co-activating several primitives. However, such

an additive representation can cause confusion in cases like “the black cat is in

the red box” which would be indistinguishable from “the red cat is in the black

box”, as shown in Figure 6.1, third row.

(2) Use complex primitives, that is, separate and independent representations for

each possible combination of conceptual features. Thus, there are complex

primitives for “black cat” and “red box” as well as for “red cat” and “black

box”. This solves the problem of how adjectives are attributed correctly to

the respective nouns. However, this leads to a combinatorial explosion in the

number of primitives. Each of them represents a composed concept and needs

to be stored separately. Moreover, there are no shared properties between

“black cat” and “red cat” making generalizations from one to the other difficult.
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Another variation on complex primitives is to use fundamental primitives but

have a dedicated node for each possible binding between them, such as in van

der Velde and de Kamps (2006). These models suffer from an explosion as well,

but now in the number of nodes that represent the possible bindings (Hadley,

2006; Dyer, 2006).

I now turn to more promising approaches towards solving the binding problem:

(3) Use of conjunctive representations where primitives are stored as multidimen-

sional concept vectors that can be combined to generate new but related rep-

resentations of composed concepts. The first approach of this kind used the

tensor product to combine two or more vectors into a new, higher-dimensional

representation of a composed concept (Smolensky, 1990). The tensor product

is order-sensitive, such that “the black cat in the red box” will have a different

representation than “the red cat in the black box”. This addresses some of

the problems with the approaches (1) and (2) above. There are variations on

this method in order to avoid the increase in dimensionality incurred by using

tensors, for example, through holographic projection (Plate, 1995) or circular

convolution in vector symbolic architectures (Gayler, 2004; Eliasmith et al.,

2012).

(4) Use of dynamic binding that exploits the temporal nature of sequences of items

and represents binding relations dynamically. One such implementation achieves

binding through synchrony (Shastri & Ajjanagadde, 1993) which can use funda-

mental primitives as in (2), but at any point in time only co-activates the nodes

that are to be bound. That is, when encountering “the black cat is in the red

box”, at time 1 “black” and “cat” are active, while at time 2 “red” and “box” are

active together, and so forth (Figure 6.1). To obtain a stable representation, the

synchronous activations are replayed periodically, creating oscillations where

all binding relations are cycled through one-by-one. This mechanism, again,

addresses some of the problems in (1) and (2).

The dynamic binding approach (4) has gained traction since there is some supporting

evidence from visual processing (e.g., Eckhorn et al., 1988), and several proposals

have used “synchrony” to realize binding in connectionist models (Sougné, 1998, 2001;

A. E. Martin & Doumas, 2017; Rabagliati et al., 2017). Sougné (2001) is particularly rel-

evant here, since they implemented synchronous binding in spiking neural networks.

They used neurons that fire with a fixed period when activated, and Hebbian learning

mechanisms were engaged to synchronize and desynchronize the neurons to realize
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the binding of roles and fillers. This proposal assumes that there are neurons which

function as intrinsic oscillators that are dedicated to binding. There is, however, little

evidence that such neurons exist, and thus it is unclear how periodic reactivation

is implemented and coordinated. Apart from this, it is unclear how synchronous

activation is used for processing by downstream regions (van der Velde & de Kamps,

2015). Furthermore, Jackendoff (2002) has questioned the viability of this approach in

light of the massiveness of the binding problem. To process language, many binding

relations have to be established simultaneously, which raises the issue of how long the

oscillation periods are, and how many parallel binding relations can be represented

and maintained within that time window.

An alternative implementation of dynamic binding that is directly based on

the properties of spiking neural networks is polysynchrony (Izhikevich, 2006). There,

groups of spiking neurons form a spatio-temporal ensemble such that once the initial

group members are activated, a temporally extended spike pattern is triggered that

can encode binding information. It can be formed through spike-time dependent

plasticity and relies on variable spike transmission delay times. This approach has

been successfully used to model aspects of visual binding (Isbister et al., 2018).

6.1.2 Problem of 2
One aspect of the binding problem that is particularly difficult to handle for con-

nectionist models is the problem of 2, also referred to as the multiple instantiation

problem, or type-token problem (Sougné, 2006). Jackendoff (2002) identified it in-

dependently from the binding problem as one of the four big challenges for connec-

tionism. It occurs in cases when the retrieval of a primitive from long-term memory

happens more than once during the processing of a sentence. For example, in The

black cat is chasing the red cat, binding is not just necessary to process the adjectives

and nouns correctly but also to conceptually distinguish both instances of cat (Figure

6.1, bottom row). There are different approaches to deal with the problem (Sougné,

2006):

(1) Load several instances of the repeated primitive (here cat) into working memory.

This is inspired by symbolic models that can have an arbitrary number of items

of the same type in working memory, but it is not clear how this could be

implemented neurobiologically.

(2) Hold several instances of the repeated primitive in long-term memory. This uses

the same rationale as when using complex primitives to address binding and,
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correspondingly, has similar issues. If there are n instances of cat in long-term

memory, then there will be a hard limit of n + 1 instances of cat in a sentence

that cannot be processed correctly anymore. It is also unclear if one has the

same number of instances for each primitive, how this number is determined,

and if it can be changed.

(3) Use a doubling of the frequency to encode the repeated retrieval of the same

concept in dynamic binding through synchrony. This relies on periodic reacti-

vation of the primitives. Such a mechanism can repeatedly activate the same

primitives at two different points of the oscillation. However, concerns regard-

ing the binding through synchrony remain because it is unclear what causes the

reactivation and how it is used for further processing.

6.1.3 Query task and parallel readout
In the NBL model, I operationalized binding in terms of question answering, where an

item A is bound to variable B if A can be retrieved by asking “What is the information

bound to B?” (van der Velde & de Kamps, 2006). I do this using two different tasks,

one that implemented this question answering explicitly, and one implicit task where

I show that the relevant information for binding is available. In the explicit binding

task, I query the network with a semantic role after the presentation of each sentence,

such as “AGENT?”, which represents the question “Who was the agent in the last

sentence?”. I then train a readout to map the resulting network state onto the noun

corresponding to the queried semantic role. Importantly, I use the same readout for all

different queries such as “AGENT?”, “PATIENT?” and “THEME?” and this readout

has to generate the correct answers.

In the implicit binding task, I decode different pieces of information after the

sentence has been presented. I use parallel readouts, similar to chapter 5, to determine

which semantic roles were assigned to the first/second/third noun phrase. Addi-

tionally, I read out the identities of the nouns, adjectives, and verb in the sentence,

as well as the tense, aspect, and voice of the event semantics. The parallel readouts

show that the relevant information is available in the neural network and can be

accessed by downstream networks for further processing. They also show that the

binding information represented by the NBL model is not limited to only one instance

per sentence, but that it can provide information for several independent binding

operations, as required for language processing (Jackendoff, 2002).
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6.1.4 This study
In this chapter, I investigate the binding problem using the NBL model. First, I test if

the model can bind words to semantic roles using the query task. Second, I investigate

if the network can represent a larger number of binding relations simultaneously, that

is, whether it is suitable to address the massiveness of the binding problem. I test this

using thirteen independent parallel readouts. Third, I use the information provided

by the parallel readouts to test if the problem of 2 can be solved by the NBL model,

where different instances of the same concept within a sentence have to be identified.

I combine the information from the adjective and noun identity readouts to do that.

For example, for the sentence The red cat chases the black cat, I test if this information

connects red to the first and black to the second instance of cat. In the final section, I

investigate the state-space dynamics of the network and compare model behavior to

the proposed solutions to the binding problem discussed in sections 6.1.1 and 6.1.2

above.

6.2 Methods
I simulated the NBL model as described in chapter 2, informed by the insights from

chapters 3 and 4. Table 6.1 lists the parameters I used here which diverge from the

general description.

Variable Value Description
Ntot 2000 total number of neurons
Nexc 1600 number of excitatory neurons
Ninh 400 number of inhibitory neurons
τw 200 ms neuronal adaptation time constant
τsyn 500 ms synaptic current time constant
ρc 5% network connection density
ftunen 5 Hz tuned target spike rate
ntrain 200 000 words ≈ 13 000 sentences training set size (including queries)
ntest 50 000 words ≈ 3100 sentences testing set size (including queries)

Table 6.1.: NBL model parameter values used in this chapter.

Generally, I found that the query task was more sensitive to network and lexicon

size than previous tasks. Thus, I doubled the total number of neurons while keep-

ing the ratio of inhibition to excitation and all other parameters the same (encoding

projection, connection density, tuning frequency, etc.). The training set contained

200 000 words which corresponded to approximately 13 000 sentences that were pre-
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sented during the input phase. I also reduced the lexicon size, thus decreasing the

number of possible utterances in the language (see below). The number of training

sentences was still less than 0.000 25 % of all possible sentences generated by the

language. Furthermore, I found that tuning the network to a target firing rate was not

always successful. For instance, when the network was tuned to 5 Hz at the beginning

of each simulation, it sometimes deviated from this level of activity at the end. Model

subjects were excluded from analysis if the average firing rate was less than half or

more than twice the target rate. This happened 3 out of 15 times. Hence, all results in

this chapter are averages from 12 model subjects with the same network parameters

but different random seeds. These randomized subjects differed in the composition

of their training and test sets, the specific synaptic connectivity, and the projection

patterns used to encode input to the network.

6.2.1 Querying task
As described in section 6.1.3, I used the query task to test binding in the NBL model

explicitly. To reduce the computational resources needed for training and testing, I

attached a query for each semantic role in a sentence. For example, a test sentence

with the roles THEME and EXPERIENCER would look as follows:

The boy was hurt by the ball . THEME? EXPERIENCER?

The separate input items are separated by spaces. The correct readout response to the

query would then produce ball, boy, in this order. To avoid that the different queries

interacted and influenced each other, I saved the full network state (membrane

potentials, adaptive neuronal currents and synaptic currents) at the end of each

sentence and reloaded it before each query. In this way, I could use the sentence-

final network state and apply different queries to this sentence. All of the queries

were presented for a duration of 150 ms. Depending on the number of semantic

roles in a sentence, there were one, two or three queries. There were approximately

28 000 queries in the training set and 7000 queries in the test set for each model subject.

To calibrate the readout, I separated the network states resulting from the query input

from the rest of the sentences, and only trained (and tested) on the states generated

by the queries.
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Example: The little girl was give -ing
the man the heavy book.

Readout # options Output
semantic role 1st NP 4 AGENT
adjective 1st NP 9 little
noun identity 1st NP 44 girl
semantic role 2nd NP 7 RECIPIENT

adjective 2nd NP 9 NONE
noun identity 2nd NP 45 man
semantic role 3rd NP 4 THEME

adjective 3rd NP 9 heavy
noun identity 3rd NP 45 book
verb identity 48 give
aspect 2 progressive
tense 2 past
voice 2 active

Table 6.2.: Target outputs for an example sentence with the readout name (left), number of
possible outputs per readout (middle) and the correct output for the example sentence (right).

6.2.2 Parallel readouts
I used parallel readouts to extract different types of information after the presentation

of each sentence. The readouts were trained on all words in a sentence. I only report

the performance on presentation of the end-of-sentence marker where sentences were

disambiguated and the maximum performance was 100%. In addition to decoding

semantic roles, I used readouts for other sentence properties such as the identity

of words (nouns, adjectives, and the verb). Furthermore, there were three readouts

identifying features of the event semantics of a sentence; voice, tense and aspect.

These different readouts and their target values are shown in Table 6.2 for an example

sentence. In total, there were thirteen parallel readouts trained on the same recorded

network states. As in chapter 5, when a readout was not applicable to a sentence,

the target output was set to NONE, for example when there were less than three

noun phrases in a sentence, or when there was a noun without an adjective. To

investigate the problem of 2 (Po2, for short), I used the output from these parallel

readouts for sentences with repeated nouns in the first and second noun phrase (Po2

sentences) generated by the four constructions described in Table 6.3 (active/passive

agent-patient and theme-experiencer transitives).
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Construction (frequency) Word categories and examples
Transitive (Agent-Patient) Action = TRANSITIVE (AGENT-PATIENT);

Agent = LIVING; Patient = OBJECT;
(Instrument = INSTRUMENT)

Main form (9.5%) The man catch-s3rd the small apple.
Po2 form (9.5%) The small dog catch-s3rd the big dog.
Syntactic alternation (4.5%) The small apple is catch-edpar by her.
Po2 Syntactic alternation (4.5%) The small dog is catch-edpar by the old cat.
Instrumental preposition (5%) The man catch-s3rd the small apple with a net.
Alt. instrumental prep. (2.5%) The apple is catch-edpar by the man with a net.

Transitive (Theme-Experiencer) Action = TRANSITIVE (THEME-EXPERIENCER);
Theme = OBJECT; Experiencer = LIVING

Main form (4.5%) The stick scare-ed the man.
Po2 form (4.5%) The cat scare-ed the dog.
Syntactic alternation (2.5%) The man was scare-edpar by a stick.
Po2 Syntactic alternation (2.5%) The small cat was scare-edpar by a red cat.

Roles: AGENT, PATIENT, THEME, EXPERIENCER, INSTRUMENT, ACTION

Table 6.3.: Constructions that were changed relative to Table 2.2. Po2 marks constructions
that could generate sentences with repeated instances of the same noun. In these cases, for
example, cat could occur as an AGENT as well as a PATIENT, THEME or EXPERIENCER.

6.2.3 State-space trajectories
To visualize the state-space trajectories of the spiking network, I recorded the mem-

brane potentials and the adaptive currents for each neuron at every millisecond. The

aim was not to perform an analysis of the state-space but to illustrate how the network

state moves through this high-dimensional space for a particular sentence or sequence

of words. To reduce dimensionality, I applied principal component analysis (PCA)

on data from a selected set of keywords that I wanted to emphasize in the respective

plot. The PCA shows both the state changes during the processing of each keyword

and the changes in the transition between words. These keywords are indicated in

the caption of each figure. Then, I used the coordinate system spanned by the first

three principal components to plot the trajectory of a sentence or set of words.

6.2.4 Input language
I adapted the language from section 2.3 to enable me to investigate the questions

relevant in this chapter. The lexicon size was reduced from 16 to eight items in each

category (116 words in total). I also allowed the repetition of nouns and adjectives

within a sentence. To identify the different nouns by their adjectives, I increased

the probability of an adjective in each noun phrase to 75%. Finally, I changed four
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constructions such that they generated sentences with multiple instances of the same

noun – Po2 sentences. I used the transitive constructions with unconstraining sentence

beginnings and changed the second noun to also be semantically unconstraining. A

semantically unconstraining noun could occupy both an active role, such as AGENT,

and a passive role, such as PATIENT. These were the nouns in the LIVING/OBJECT

category (see section 2.3). In these Po2 constructions, a sentence that contained the

same noun twice was generated in one of eight cases. Table 6.3 shows the updated

language fragment of transitives. All other constructions remained the same. With

these changes, the number of distinct utterances that could be created by the language

was 5.5 billion.

6.3 Results

6.3.1 Querying binding information
In the query task, first a sentence was presented to the model, then a semantic role

query was injected into the network, and then the readout had to respond with the

lexical noun or pronoun that occupied this role in the sentence. For example, in the

test item The woman gives the book to the boy. AGENT? the correct readout response to

the “AGENT?” query would be woman. The results from 12 model subjects, tested

on 7000 queries, are shown in Figure 6.2. Panel A shows the overall performance

of the NBL model compared to a random classifier. Note that all 44 nouns and

pronouns in the language were possible responses. Therefore, the random classifier

only performed at 3±0% while the model reached 78±0% binding performance. A

paired-samples t-test showed that this difference was significant (t(11)=638, p<0.001).

Panel B of Figure 6.2 shows the overall binding performance split by the different

semantic role queries. Performance of the NBL model was at least 73% for each

queried role, with the “INSTRUMENT?” and “GOAL?” roles both yielding higher

performance above 93%. This is likely because the nouns that were filling these

roles were always positioned at the end of sentence and there was a dedicated noun

category for each of the two roles. In contrast, the random classifier never reached

beyond 4% performance. Paired-samples t-tests showed a significant difference

between the two models for all distinct role queries (for each t(11)>78, p<0.001).

Panel C of Figure 6.2 shows how the incorrect binding responses were distributed

for each noun. Since the lexical nouns in the language had distributional semantics

due to noun category membership, I labeled the blocks of eight nouns with the
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Figure 6.2.: Binding performance in the query task. A: Overall performance of the NBL
model compared to a random classifier. B: Performance split by the different semantic role
queries. Error bars show 95% confidence intervals. C: Confusion matrix by noun, grouped into
word categories. For each readout binding target, it shows how often the correct word was
selected (on the diagonal) and how often other words were assigned (off the diagonal). Most
off-diagonal fields had a confusion value close to 0% (light yellow).

124 Chapter 6 Binding in the NBL model



ro
le

 1
st

 N
P

ro
le

 2
n
d
 N

P

ro
le

 3
rd

 N
P

v
e
rb

1
st

 n
o
u
n

2
n
d
 n

o
u
n

3
rd

 n
o
u
n

1
st

 a
d
je

ct
iv

e

2
n
d
 a

d
je

ct
iv

e

3
rd

 a
d
je

ct
iv

e

v
o
ic

e

te
n
se

a
sp

e
ct

0%

20%

40%

60%

80%

100%

P
e
rf

o
rm

a
n
ce

A Performance by readout

NBL model random
classifier

0%

20%

40%

60%

80%

100%

P
e
rf

o
rm

a
n
ce

B Full event correct

all but three

all but two

all but one

all correct

Figure 6.3.: Parallel readout of binding information. A: Performance of the NBL model
and the random classifier (black bars) for each of the parallel readouts separately. B: Dark
blue: performance when counting only the instances where all readouts were correct. Lighter
blues: performance when allowing an incorrect assignment in one, two, or three of the thirteen
readouts. Note that the random classifier did not satisfy these conditions even a single time
for ≈37 000 sentences tested in the twelve different model subjects. Error bars show 95%
confidence intervals.

corresponding category names (see section 2.3), and grouped the pronouns. The

LIVING/OBJECT category was a set of nouns that could function as grammatical

subjects and objects and hence could take on a variety of semantic roles. For each

individual noun, the majority of binding queries were correct (at least 51%). The

category with the highest binding performance was INSTRUMENT (>99%), while

the categories with the lowest performance were the LIVING/OBJECT nouns (61 to

65%) and the pronouns (51%, 54%, 82% and 61% for he, she, it and they, respectively).

Performance for other categories by word were 77–85% (LIVING), 90–93% (OBJECT)

and 91–97% (LOCATION). I found that most confusions occurred within category,

in particular, within the LIVING/OBJECT category (see darker off-diagonal color in

figure 6.2). Pronouns could occur in all constructions, assume different positions, and

many syntactic and semantic roles, which caused the most confusion with other noun

categories.

6.3.2 Parallel readout of binding information
In this section, I show that readouts can extract several different kinds of information

from the same network activity in the NBL model using a set of parallel readouts.
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Each of them was trained independently with the respective target output. Beyond

reading out semantic role, noun, adjective and verb identity, I also read out the event

semantics voice, tense and aspect. This would allow me to reconstruct the event

semantics that went into the generation of each sentence. The performances on this

task are displayed in Figure 6.3. As reference model, I again used a random classifier.

Note that in panel A, the performance of the random classifier differs greatly between

readouts: from 3±0% for the verb to 60±1% for the voice readout. This is because

the number of options and the distribution of these options differ between readouts

(see section 6.2.2). There are only two voices, active and passive, but there are 48

verbs in the language, which makes guessing the verb identity less likely to be correct.

The model performance varies less and is always above 73%. When comparing

each of the readouts individually to the random classifier, I find that the NBL model

always performs better. Using paired-samples t-tests, I find significant differences

between the model and the random classifier for each readout (for each t(11)>18,

p<0.001). To assess how well the information conveyed by each sentence as a whole

was represented, I combined all readouts and evaluated in how many cases the NBL

model was able to read out every single property of the given sentence correctly

(Figure 6.3B). I found that all readouts made the correct choice in 40±5% of the

cases. If I allowed one mistake, performance in the NBL modelincreased to 65±6%.

Allowing another mistake, the performance was 83±5%, and 93±3% for a third

one. By comparison, the random classifier performed at 0±0% even when allowing

three mistakes. This suggests that detailed information about a processed sentence is

represented in the network and can be extracted reliably, including the semantic roles

of the various noun phrases, word identities, and event semantics. When combined,

these slot/filler binding relations constitute a sentence-level interpretation.

6.3.3 Problem of 2 sentences
Here I tested whether the NBL model could identify different instances of the same

noun within the same sentence. I used four constructions designed to generate Po2

sentences with a probability of 12.5% each. In these sentences, the reoccurring nouns

were always in the first and second noun phrases. Using the data on these sentences

from the last section, I tested if (i) both nouns could be identified as being the same,

using readouts for first and second noun identity; and (ii) if both of the adjectives

corresponding to the nouns were identified correctly, using readouts for first and

second adjective identity. Figure 6.4A shows that both nouns were correctly identified

in 98±1% of all Po2 sentences and both adjectives were correctly identified in 94±3%
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Figure 6.4.: Correct assignments and error types in problem-of-2 sentences. A: Performance
in identifying both nouns or both adjectives. B: Distinction of different error types, examples
for each type are shown in Table 6.4. Error bars show 95% confidence intervals.

of the cases. Furthermore, I distinguished five different error types to determine

which kinds of errors occurred. A relevant question here is how often the adjective for

the first noun was attributed to the second one, and vice versa. These five error types

can be sorted into three groups of errors: First, it is possible that the two instances

of the noun cannot be distinguished (noun identity confusing error, Table 6.4). This

means that either both noun instances are bound to the same adjective or there are

swapped adjectives between both noun instances. These are the types of errors one

would expect from a connectionist model where two bindings interfere with each

other. Secondly, it is possible that information that is not provided by a sentence is

accidentally attributed but in a way that preserves the identity of both noun instances

(noun identity preserving error). If, for example, the first noun does not have a

modifying adjective but the readout assigns an adjective distinct from the one for the

second noun, this would be an error that would not indicate a failed separation of

both instances since they still can be distinguished from each other; see the example in

Table 6.4 under error type undefined adjective different. And third, it is possible that the

readout is erroneous in a way that has no relation to other parts of the sentence (other

errors). If one or both of the nouns were read out incorrectly I call this an error noun,

and if one or both adjectives were read out incorrectly I refer to it as error adjective.

In these cases, the error is due to spurious activity that causes an incorrect readout

and it can not be determined whether the two instances of the noun could still be

distinguished. I found that in 93±3% of the tested items, both nouns and adjectives

were correctly identified, and hence both instances of the nouns can be distinguished
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error
group

error
type

example
readouts

1st adj. 1st noun 2nd adj. 2nd noun

noun
identity
confusion
errors

error A little cat chases the big cat.
adjective target little cat big cat
same erroneous big cat big cat
error A little cat chases the big cat.
swap target little cat big cat
adjectives erroneous big cat little cat

identity
preserving
error

undefined A cat chases the big cat.
adjective target NONE cat big cat
different erroneous little cat big cat

other
errors

error A little cat chases the big cat.
adjective target little cat big cat
other erroneous little cat old cat
error A little cat chases the big cat.
noun target little cat big cat

erroneous little cat big elephant

Table 6.4.: Examples for error types distinguished in figure 6.4. The five error types are
illustrated here with an example sentence as well as the corresponding target and erroneous
readouts for the identity of the first and second nouns and adjectives. These types can be
assigned to three error groups which categorize the errors in terms of sentence processing
mistakes.

successfully (Figure 6.4B). Among the errors, the most frequent one was the noun

identity preserving error with 3±2%. The noun confusion errors occurred in 2±1% of

all cases, while the swapped adjectives error did not occur a single time. Finally, other

errors occurred in 2±2% of the cases.

6.4 State-space dynamics
In this section, I explore how the NBL model solves the binding problem and the

problem of 2. I investigate how the state of the spiking network moves through the

state space for different kinds of input. One way to think about spiking networks

is as dynamical systems. A closed system does not receive input (e.g., information,

energy, etc.) and is fully described by the value of all state variables at one point in

time plus the “rules” how the system changes over time. The state of the network is

the combination of all state variables (here, the membrane potentials, the adaptive

neuronal currents, and the synaptic currents) and the rules are the differential equa-

tions governing the neuronal and synaptic dynamics (section 2.2). The NBL model,

however, is not a closed, or autonomous, dynamical system but an open system that
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receives input (it is “forced”). Thus, it responds to and processes different inputs.

In this section, I show how the state of the system changes due to input words and

how a sequence of words is processed. Since the readouts only have access to the

membrane potential and the adaptive neuronal currents, I focus on the evolution of

these state variables.

To reduce the 4000 dimensions of the state variables to three, I used principal

component analysis (PCA) executed on the data from a set of keywords for each plot.

The three dimensions shown are the ones that explain the most variance within the

data (i.e., the first three principal components) and show the dynamics during a word,

as well as the differences between words. I then use these dimensions as coordinate

system to also plot data from contextual words to the keywords, so the movement

through state space becomes continuous and more intuitively understandable. Below

each plot, it is noted which words were the keywords the PCA was done on. Note

that state change in the state space does not happen at a constant speed. In particular,

the length of a word trajectory in state-space does not indicate the length of the word.

Longer words tend to show longer trajectories but (a) different stimulations can cause

stronger or weaker state changes and (b) PCA rescales the dimensions according to

the variability within them.

Single sentence presentation

Figure 6.5 shows how the state of the network changes as a result of processing a

sentence with a repeated noun. We can see a continuous trajectory from the sentence

beginning (marked by the cross) to the second instance of the noun dog at the end

of the sentence. On the Y-Z projection, the two instances of dog (both blue) have a

similar shape because they were triggered by the same input stimulus. However, it

is also visible how the preceding context is integrated with new input. Each word

starts where the last one ended and the two instances of dog, even though they were

delivered by the same input stimulus, are clearly distinct on the X-Z projection. This

contextual integration also allows the association of big and little to the corresponding

instance of dog.

The way the NBL model uses sequential order to inform binding is reminiscent

of dynamic binding (see (4) in section 6.1.1). However, there are no oscillations.

The network did not exhibit spontaneous oscillations when stimulated by input

and I did not add a mechanism to induce oscillatory behavior. Successful binding

in sections 6.3.1 and 6.3.2 shows that oscillations were not necessary to represent

binding relations. Importantly, the binding readouts did not have access to the whole
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Figure 6.5.: State-space trajectory during a Po2 sentence. Illustration of the example sentence
The big dog chase -ed the little dog. PCA was run on keywords big, dog, little, dog. The cross is
marking the sentence start, the trajectory during each word is marked with a distinct color. The
top panel shows the 3D plot of the network state with the projections on the respective axial
planes plotted faintly. Bottom panels show the same projections in separate plots for clarity.
The repeated instance of dog is similar in the Y-Z projection but spatially distinct in the X-Z and
the X-Y projections.
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trajectory, as plotted here, but only to the network state after the last word of each

sentence. This means the information of the repeated noun and which adjective has

to be bound to which instance of the noun is still available in different dimensions of

the network state after the sentence is complete. Previous input words do not need to

be reactivated but instead the information remains available within the final state of

the network. I showed in chapter 4 how it was possible to store information, such as

binding relations, in the activity-silent state variables with long time constants.

Non-linear integration of stimuli

In Figure 6.6, the left panels show three instances where the network with the same

initial state (marked by the cross) was stimulated with different adjective-noun pairs.

The three adjectives were different from each other while the subsequent noun was

the same. The Y-Z projection shows that the trajectories move in three distinct

directions,separated by roughly 120 degrees. This is a consequence of the dimensions

chosen by the PCA. As before, it can be seen that the position at the end of each

noun depends on the preceding adjective, hence the information which adjective was

presented before the noun is retained in the end state of each trajectory. However, the

combination of adjective/noun input pairs is not purely linear. The three trajectories

for dog are not spatially shifted (translated) copies of each other but they interact

in a more complex fashion with the preceding input. This shows how contextual

information was maintained in processing memory.

While the three trajectories for dog are roughly parallel to each other on the X-Y

projection, they have different directions on the X-Z projection. This multidimen-

sional representation allows the network to store “sameness” between words and as

well as the contextual differences at the same time and it uses different dimensions

in the state space to make this distinction. This is similar to the conjunctive repre-

sentations (described in (3) in section 6.1.1). These representations used some form

of vector multiplication (e.g., the tensor product or circular convolution) such that

the combination of two concept vectors was not just a summation of states but an

operation that allowed a more complex interaction between the concepts (Hummel,

2011). Multiplicative interactions like the tensor product have the important property

that they are order-sensitive (non-commutative) (Smolensky, 1990). I found that the

way the NBL model combines words is also order-sensitive. This can be seen in

Figure 6.6, right panels, where I compare a noun preceded by two adjectives with the

same noun preceded by the same two adjectives in reverse order. (This is otherwise

not possible in the language but was separately simulated for this plot.) Clearly, the
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Figure 6.6.: State-space trajectories for different adjective-noun groups. Bottom panels
show the axial projections from the larger 3D plots. Left panels: Illustration how the network
responds to a noun depending on the preceding adjective. The three trajectories for happy
dog, old dog and tiny dog all originate at the cross and have the same input stimulation for
dog. However, the trajectories of dog start at different positions and themselves depend on
the preceding input word (see X-Z projection). PCA was run on the six keywords in the plot
legends. Right panels: Illustration of trajectories for big old (purple colors) and for old big
(green colors) followed by the same dog stimulus (blue). They originate at the same point
marked by the cross. For clarity, two instances of the same adjective have different colors here
but the stimulation remained the same. The difference in trajectory and endpoint of both dog
instances (X-Y projection) shows that context integration is order-sensitive. PCA was run over
the first old and both dog instances as keywords.

endpoints of the two trajectories on dog are distinct, which is most pronounced in the

X-Y projection. This differs from previous proposals for generating conjunctive repre-

sentations in that no special binding mechanism is required (e.g., tensors). Moreover,

the integration process where different features are combined is non-linear because

the network is a highly non-linear dynamical system.

Query readout

To illustrate how the query task tested in section 6.3.1 is solved, and how the query is

integrated into the network state, in Figure 6.7 I show two queries for three similar

sentences in two different coordinate systems (left and right panels) on the same data.

The three sentences were of the form The big dog chases the little cat but differed in
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Figure 6.7.: State-space trajectories during the sentence query. The left and the right panels
show the same data in two different coordinate systems. Bottom panels show the axial pro-
jections from the 3D plot above them. Two queries “AGENT?” and “PATIENT?” are shown
for three similar sentences. The endpoints of the sentences, which are the starting points of
the query trajectories, are marked by crosses. In the left panels, the PCA was run with the
“PATIENT?” and “AGENT?” queries of the first sentence as keywords. In the right panels, the
PCA was done with all six queries as keywords. The two plots show that querying the NBL
model causes a movement to a query-specific region of state space (left panels). At the same
time the network state retains sentence-specific lexical information in other dimensions which
the readout can use to answer the query (right panels).

either the second noun or the second adjective. Thus, the network state at the end

of each sentence was different. These endpoints are marked by three crosses and

are the starting point from where the different query trajectories originate. Since

the network is reset to the sentence-final state before querying, both queries to each

sentence originate at the same point. By selecting the keywords that the PCA was

executed on, the coordinate system in the left panels was chosen to emphasize the

state-space movement due to the queries themselves. We see that each “AGENT?”

query moves the network state into one region of state space while each “PATIENT?”

query moves it to a different region which is most pronounced in the X-Y projection

panel. This shows that the queried role itself can be identified from the trajectory

endpoints. The coordinate system in the right panels was chosen to emphasize the

difference between the final states of the sentences, which is also most distinct in

the X-Y projection. Despite the strong forcing through state space due to the query,
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the sentence-specific lexical content is retained until the end of sentences, and this

provides the readout with the information required to answer the query.

6.5 Discussion
In this chapter, I investigated how the NBL model deals with the binding problem

in language processing. First, I have shown that it can accomplish explicit binding

by identifying the correct noun when queried for a semantic role after sentence

presentation. Second, using parallel readouts, I have shown that it can provide

information necessary to address the massiveness of the binding problem. The

network state contains information about syntactic and semantic features after the

complete sentence has been processed and this information can be decoded with linear

readouts and transferred to downstream networks for further processing. And third,

I have shown that this information was sufficient to solve the multiple instantiation

problem, or problem of 2. I found that the NBL model could assign the correct

adjective to each instance of a repeated noun in more than 90% of the tested sentences.

Finally, by visualizing state-space trajectories, I have shown how the model performed

these tasks and that it implements aspects of two connectionist proposals to solve

the binding problem in a neurobiologically plausible manner. These results suggest

that the NBL model can use a fixed set of primitives and combine them flexibly to

represent composed concepts. Furthermore, binding relations are not limited to word

pairs (e.g., adjective-noun) but words can be the filler of a variable slot, such as a

semantic role. The fact that these tasks were solved with high performance shows

that the NBL model implements a mechanism that is suitable for solving binding

problems.

By probing state-space trajectories, I could identify similarities between the

binding mechanism implemented in the NBL model and previous proposals for

binding in connectionist models. The NBL model reflects aspects of two proposals

discussed in the introduction: (3) conjunctive coding and (4) dynamic binding. Con-

junctive coding is implemented as non-linear integration of primitives: the network

state after presenting black cat follows from a nonlinear, order-sensitive combination

of black and cat. Since the network has high dimensionality, there are also dimensions

in which cat can be identified independently of the preceding adjective. However, in

contrast to other proposals on how to achieve conjunctive coding (Smolensky, 1990;

Gayler, 2004), there is no specialized operation required to achieve this, such as tensor

products or circular convolution. At present, it is not known how such mathematical
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operations on high-dimensional vector representations could be implemented within

the brain's neurobiological infrastructure. In contrast, conjunctive coding in the NBL

model relies on the nonlinear nature of the network dynamics and its specific con-

nectivity to combine primitives into composed concepts where history-dependent

neuronal processes with long time constants (such as spike-rate adaptation) serve

to integrate consecutive pieces of information. This neuronal processing memory

mechanism has been demonstrated to be sensitive to context of occurrence and serial

order relations (Fitz et al., 2020).

Additionally, the NBL model implements aspects of dynamic binding by contin-

uously integrating a stream of information with the preceding context. In figure 6.5,

it was shown that the temporal difference between the two presentations of dog was

reflected in their position in state space. However, in contrast to dynamic binding

through synchrony models relying on oscillations, repeated reactivation of represen-

tations was not necessary, because the binding information was already maintained

in the network state and could be read out at the end of the sentence. Again, there

were dimensions in the network that retained information related to which nouns

were present in the sentence and other dimensions retained information about which

adjective modified which noun. Thus, the NBL model offers a solution to two of

the main critiques of binding-through-synchrony approaches using oscillations: that

it is not clear (i) what causes periodic reactivation and (ii) how the information re-

flected in synchronous activity is used by downstream regions. In the NBL model,

temporal information can be maintained in the network through neuronal memory

mechanisms without oscillations, and downstream regions could, in principle, lin-

early extract binding relations for further processing, or explicit reasoning about the

message of an utterance. The NBL model implements aspects of the dynamic binding

through polysynchrony model. This makes sense, since it too is based on spiking

neural networks with time-delayed communication. A difference is that in the NBL

model, the binding information is stored within the whole neuronal state while in the

polysynchrony model, only the elicited spikes carry information. The former has the

advantage of building a stable representation that can be read out over a longer time.

Otherwise, reading out the spike pattern at the moment of generation is necessary.

This discussion touches upon a conundrum related to the binding problem in

connectionist models: On the one hand, stable representations of binding relations are

needed to maintain information over long periods of time. On the other hand, timing

and the order of input often carry relevant information in language which means that

binding also needs to be sensitive to information on shorter timescales. The binding-
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through-synchrony model addresses this issue by replaying previous information

over and over. The NBL model offers an alternative that relies on complex interactions

between dynamic variables with long and short timescales. In chapter 5, I showed that

readouts can be calibrated to find stable representations of the different semantic roles

over the course of a sentence and these were supported by neuronal and synaptic time

constants of up to 500 ms. Dynamic variables in biological circuits can act on even

longer timescales, for example, in long-term synaptic dynamics, protein synthesis

and switching (K. C. Martin & Kosik, 2002; Fallon & Taylor, 2013), and these could be

utilized in long-term storage. In this chapter, I showed that stable representations did

not interfere with timing information since two instances of the same word could be

distinguished and independently identified at the end of a sentence. Thus, the NBL

model provides both temporally stable representations while also being sensitive to

timing information.

In section 6.1.2, I described three ways to implement a solution to the problem

of 2 (Sougné, 2006): (1) load several instances of the repeated noun into working

memory, (2) rely on multiple instances of the same noun in long-term memory and

(3) repeatedly activate the same noun during each period of an oscillation when

using dynamic binding-through-synchrony. Of these proposals, (1) is the closest

approximation to the mechanism implemented in the NBL model since there is only

one instance per noun in long-term memory, excluding (2), and the NBL model does

not exhibit oscillations, excluding (3). However, there are no static memory registers

in the NBL model. As discussed in chapter 4, processing memory in the model is

based on neuronal and synaptic processes with long time constants. The information

held in these dynamic variables constantly changes and continuously influences the

network state. Thus, dynamic memory registers in the NBL model actively transform

information during sequential processing in unification space, the opposite of a static

register memory that maintains information passively and unchanged. Therefore, the

different instances of the same noun carry a temporal signature in memory and this is

what makes them distinguishable for the readout processes. In the model proposed

here, variables and fillers are not connected by a physical link that represents binding

as, for example, in van der Velde and de Kamps (2006). Rather, binding is implicit

in a dynamic processing memory. A value is bound to a variable if the value can be

obtained by querying the network with a semantic variable, and vice versa (van der

Velde & de Kamps, 2015). If the value of a semantic variable differs between two

sentences, this will be reflected in different network trajectories through state space.

This is what I demonstrated in the query task. If a noun was the filler to a variable
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like “agent of the sentence”, processing in the NBL model was influenced such that it

was possible to extract the binding relation from a query. This mechanism does not

require explicit, physical links between representations that are bound temporarily.

In section 6.4, I showed that there was a dimension in state space that encoded

the identity of nouns in a sentence, a different dimension for the position of the nouns,

and yet a different dimension encoding adjectives, and so on. Thus, the NBL model

might suffer from an increasing need of necessary resources to deal with different

binding relations. In fact, in this chapter I had to increase network size and reduce

lexicon size to obtain high performance on the query task. The number of different

binding relations that the network needs to be able to distinguish can be estimated

as the number of constructions in the language (12), times the number of queries (7),

times the number of possible nouns (40) which yields 3360 different combinations, and

this is close to the number of network dimensions used here (4000 neurons). However,

readouts can linearly combine any subset and number of network dimensions and

project them onto a target output to solve simple tasks. When using many parallel

readouts, which does not change the network dimensions, these can be combined to

allow solving more complex tasks. For example, in section 6.3.2, I read out information

related to thirteen different aspects of the sentence content. Multiplying the number of

different readout states yields ∼1012 potential configurations and the NBL model was

able to solve this task in more than 90% of the cases using just 4000 dimensions. This is

because the response of each of these readouts can be combined differently depending

on the task requirements, and this is similar to choosing a different coordinate system

to visualize state-space trajectories in section 6.4. Note that in a setup with a more

complex readout, one that does not rely on linear separability, more information

can be extracted from individual dimensions in state space. In chapter 3, I showed

that the NBL model can separate spike information that is not linearly separable in

the dimensions of the input channels. This allows denser information transfer to

downstream networks than the linear readouts in the NBL model.

In this chapter, I have illustrated the value of neurobiological modeling in the

context of the binding problem in language processing. We know that the brain can

perform linguistic binding operations, and we also know that the theory of neural

networks is rich enough to capture classical computability theory (Siegelmann, 1999)

where binding is achieved through static memory registers (variables/slots) that store

numbers (values/fillers). Hence, the most relevant, open question is how this is

accomplished within neurobiological infrastructure. The account presented here ar-

gues that this feat could be implemented through physiological variables that control
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neuronal adaptation and provide dynamic memory registers for temporary binding

on short timescales (see also Fitz et al., 2020). Since artificial neural networks do not

typically use neurons with memory and history-dependent behavior, they might be

unable to solve this problem even in principle. This is an important contribution to

an ongoing discussion and it demonstrates the potential of the approach taken in this

dissertation.
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7General discussion

In this dissertation, I presented the notion of a neurobiological model and investigated

the properties of one specific instance, the NBL model. On this instance, I showed how

to realize some of the benefits of neurobiological models as outlined in section 1.1.

The NBL model reflects a number of neurobiological features that previous

models of sentence processing do not have. It uses a network composed of neurons

with intrinsic plasticity that communicate through spikes which have a lasting effect

on post-synaptic targets. In chapter 2, I outlined how these model features capture

properties of biology at the level of neurons and small networks. These properties also

reflect biophysical constraints that are present in the brain and limit the processing

mechanisms (i.e., algorithms) that can be realized in neural infrastructure. Imple-

menting these constraints in the NBL model results in a sentence processing model

with many independent parameters (see section 2.2), however, the values of these

parameters are constrained by the physiology of biological neurons and networks.

Within those limits, I explored different model characteristics and investigated their

effect specifically on the processing capacity of the NBL model.

In chapter 3, I compared different ways to inject input into the NBL model

and investigated how this encoding influenced information processing. I compared

three different encoding schemes; a spike-timing based temporal encoding, a rate

encoding and an encoding based on direct current stimulation. I found that the

different encodings had a strong influence on network processing. Using benchmark

tasks, I investigated how well the model separated input stimuli, retained them in

processing memory and integrated adjacent items in sequences. The results showed

that temporal and direct current encoding was superior to rate encoding in terms

of accuracy on these tasks. The former two encodings performed similarly well. I

tested the interaction of these encoding schemes with the type of input projection
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to the network. In the stimulus-specific projection a dedicated subset of neurons

was targeted by each stimulus, while the stimulus-general projection targeted the

whole network. Although all encodings benefited from using a specific projection, I

found that the performance of the rate encoding dropped more than the performance

of the other two encodings when using a general projection. Temporal encoding

allowed the separation of a large number of different stimuli even though it used

different instances of the same random Poisson process to identify distinct stimuli.

With the parameters I used in the simulations, I could distinguish up to one stimulus

for every two neurons in the network. Finally, I tested to what extent noise affected

encoding and found that all three encoding schemes showed high noise tolerance

with a stimulus-specific projection. With the general projection, temporal encoding

performed best.

These results show that the spike-based temporal encoding was robust to noise

and under some circumstances it performed equally well or better than direct current

encoding. Neuronal stimulation with direct currents is not a biologically plausible

mode of communication between neurons or brain regions but only served as an

idealized benchmark. Furthermore, the results show that one population of neurons

can encode a significant number of different stimuli without exhibiting a changing

firing rate or using a spatial component in encoding.

I further investigated the relationship between model parameters and process-

ing characteristics in chapter 4. I compared recurrent and feed-forward networks

with different connection densities and found that the processing memory in the

NBL model was not enhanced by recurrent connectivity. Furthermore, I compared

networks with and without spike rate adaptation, a form of intrinsic neuronal plas-

ticity, and with different synaptic current time constants. I found that both intrinsic

plasticity and long synaptic currents supported memory. Without these features,

there was insufficient processing memory. These memory mechanisms did not rely

on ongoing spiking interaction during memory maintenance and thus served as an

activity-silent processing memory with lower metabolic cost (as introduced in Stokes,

2015).

These results establish a causal relationship between neurobiological features of

the modeled system and its processing capacity. They identify neuronal and synaptic

processes with long time constants as instrumental for processing memory. Because

the constraints of the NBL model reflect neurobiological constraints, this suggests that

this causal relationship also holds in real biological networks (Titley et al., 2017). Such

an activity-silent dynamic memory mechanism is an alternative to static memory
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registers. It enables continuous reading and writing between coupled dynamical

processes and through these interactions implements a basic read-write memory

system (Petersson et al., 2008). Processes that run on longer time scales, such as

intrinsic neuronal plasticity and slow synaptic currents, act as memory variables

while processes with short time constants can function as writing operations that

are processing information simultaneously. At the same time, the dynamic variables

serving as memory continuously influence the membrane state and therefore the

spiking activity itself. Information is continuously read from the memory variables

and is thus folded into active processing. This activity-silent memory architecture

relies on the continuous integration of past and new information which is suitable

for online, incremental and context-dependent language processing (Marslen-Wilson,

1975; Kutas & Hillyard, 1980).

However, one interesting result in chapter 4 was that I could not find a benefi-

cial effect of recurrent connectivity. This is unlikely to be the case in real biological

systems, given the ubiquity of strong recurrent connectivity in the brain (Markram

et al., 2015; Izhikevich & Edelman, 2008). This could be due to the nature of the

random connectivity in the network of the NBL model. It is conceivable that recurrent

connectivity is beneficial if it is more specific and targeted, as it is in cortical connec-

tivity (Douglas et al., 1995), or in the context of task-relevant learning. This mismatch

between model behavior and experimental evidence invites additional research using

neurobiological models with more structured connectivity, as I will discuss below.

The investigations in chapters 3 and 4 concluded the testing of different pa-

rameter choices in the NBL model. As stated in the introduction, the more similar a

neurobiological model is to the cortical infrastructure for language, the more it will

reflect human processing characteristics. The question I addressed in the subsequent

chapters was whether the model was sufficiently realistic to reproduce effects that

have been observed in human language processing.

In chapter 5, I tested whether I could find similarities between the processing in

the NBL model and human sentence comprehension. I found that the NBL model

does exhibit several human processing characteristics when performing an online

shallow semantic analysis of sentences generated by an English-like language. It

showed contextual, incremental and predictive processing, and was able to integrate

both syntactic and semantic constraints concurrently. I also found that the model

could generalize from a small training set to novel sentences and unfamiliar nouns by

inferring semantic properties of novel words from context.
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These findings suggest that our current scientific understanding of biological

networks is sufficient to reproduce basic aspects of language processing. Rather than

being baked into the model design, these processing characteristics emerge from

modeling the underlying neurobiological infrastructure. Some of these processing ef-

fects have previously been demonstrated in connectionist models, e.g., the contextual

integration of words in semantic processing (St. John & McClelland, 1990). However,

these models are much less biologically plausible compared to the NBL model. The

results also suggest that it is beneficial to use biophysical model components where

dynamic variables have physical units of measurement. For instance, simulations

of the NBL model are running in continuous physical time rather than discrete time

steps, or abstract model time. Thus, in contrast to standard cognitive models, time in

the NBL model can be systematically related to time and timing in human language

processing, both at the level of behavior but also physiology. As a case in point,

words were presented with a duration of 50 to 500 ms, giving rise to sentences with

a duration of several seconds of real time. I found that neurobiological processes

acting on comparable time scales were required in the model to achieve sentence

comprehension on behavioral time scales. This suggests that similar neurobiological

processes in the brain might be causally relevant for supporting sentence processing

at different temporal grain sizes (Hasson et al., 2015).

Finally, in chapter 6, I used the NBL model to identify a neurobiological mecha-

nism suitable for addressing the binding problem. I investigated whether the model

could establish binding relations and analyzed how it represented this information.

I tested binding using a question-answering protocol. After presenting a sentence,

I queried the network with a semantic role variable (e.g., AGENT or PATIENT of an

action) and found that nouns that were temporarily bound to these roles could be

decoded from the network activity with high performance. Using parallel readouts,

I also demonstrated that the network maintained critical information concurrently,

such as noun and verb identities, adjectives, and the event semantics of sentences.

This information was sufficient to resolve binding relations in sentences with repeated

occurrences of the same noun – so-called problem-of-2 sentences. To investigate how

the NBL model solved binding, I analyzed the trajectories of the network through

its high-dimensional state space. I found that information was stored in the neu-

ronal memory variables of the NBL model which influenced ongoing processing and

implicitly represented binding relations that could be extracted by a downstream

readout if needed.
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In addition, these results also show how models that implement biophysical

constraints can help to address issues occurring in models that only respect some or

no biophysical constraints. If a model encounters processing limitations, such as the

binding problem, this can either reflect limitations of the underlying biological system

or it can reflect limitations introduced by the specific properties of the model. Models

that implement biophysical constraints can help to distinguish these two cases. Here

I found that, while neurons without internal dynamics may not be able to represent

binding information, more complex neurons, closer to biophysical reality, are able to

do so.

To summarize, the insights gained in this dissertation are three-fold. Firstly, the

NBL model is suitable to connect detailed neurobiology to cognitively relevant lan-

guage processing tasks. This means that the scientific understanding of neurobiology

is sophisticated enough to build models that bridge to a cognitive level. Secondly,

I found that processing limitations imposed by the neurobiological constraints of

the model are different than may be naively assumed. The encoding with spike

patterns without spatial or rate encoding proved to be powerful enough to discern a

large number of stimuli. Generalization in the NBL model was such that relatively

little training data was sufficient to extrapolate to a larger data set including entirely

novel words and contexts. At the same time, the processing memory in the NBL

model was limited. Only long neuronal or synaptic time constants could provide

sentence-level processing memory, while network size and connectivity contributed

relatively little to memory. And thirdly, the neurobiological properties of the model

provided insights into possible implementations of processing aspects in biological

neural networks. Processing memory could be provided by neuronal adaptation and

synaptic currents rather than recurrent connectivity. The binding problem could be

addressed through the rich dynamic representation of information that is present

within neuronal memory.

Outlook
I see the work presented in this dissertation as a fruitful initial step of a research

trajectory that aims to exploit the benefits of neurobiological models to improve

our understanding of sentence processing in the brain. Extending this research will

involve incorporating additional aspects of neurobiology to reflect more constraints

of the neuronal infrastructure in these models.

One possible next step is to use more detailed neurobiological data includ-

ing different electrophysiological neuron classes, connectivity data, and synaptic
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heterogeneity. As described in chapter 1, neurons in the brain exhibit different elec-

trophysiological behaviors that define different response types. Neurons of each

class have distinct spatial distributions in the cortical layers and distinct connection

probabilities depending on the electrophysiological neuron type they are connecting

to (Izhikevich & Edelman, 2008). Furthermore, the type of synapse connecting two

neurons depends on the neurons that are involved (Cauli et al., 1997; Markram et

al., 2004). The relevant data is available in the form of large-scale connectomes (e.g.,

Markram et al., 2015). Using such a detailed model of neurobiology also invites the

use of heterogeneous parameters within each neuron population. In the simulations

conducted in this dissertation, all neurons were characterized by the same neuronal

parameters. In cortex, neurons belong to different neuronal classes, which can be

formalized by different sets of neuronal parameters, and these parameters vary within

one class as well (Markram et al., 2015). Simulation studies indicate that this hetero-

geneity can have an important functional role, such as extending the network-internal

time scales, and therefore processing memory of the network (Duarte & Morrison,

2019).

In combination with further neuronal and synaptic processes that implement

learning and development, such as STDP (Markram et al., 1997; Kempter et al.,

1999), these more detailed biophysical models may be a suitable substrate to address

the functional role of recurrent connectivity in neural networks, a question that

could not be satisfyingly addressed in this dissertation. Similarly, modeling different

neuron classes allows for the investigation of their functional role (Wang et al., 2004;

Haeusler & Maass, 2007). Results in chapter 4 suggest that neurons with adaptive

electrophysiological properties are important for processing memory. Non-adapting

or bursting neurons might be important for other processing aspects. Okun et al. (2015)

identified “soloists” and “choristers” among the spiking behavior of a population of

neurons in mouse cortex, describing how much the activity of a neuron correlates

with the activity of other neurons of the same population. It is possible that such a

distinction emerges in neurobiologically more detailed models (Markram et al., 2015).

Modeling different electrophysiological neuron types may also facilitate the bridging

of neurobiological models to neuroimaging data such as local field potentials (LFPs).

LFPs are measured in EEG or MEG experiments and are mainly generated by synaptic

currents, in particular in excitatory pyramidal neurons (Nunez & Srinivasan, 2006).

There are accurate physical models that generate EEG data from simulated network

activity (Mazzoni et al., 2015; Nunez & Srinivasan, 2006) which can then be related to

data from neuroimaging experiments and generate novel predicitions.
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A further extension of this research trajectory could be to combine neurobio-

logical models with in vitro models of neuron populations to investigate processing

properties of biological networks and how they are influenced by mediating factors,

such as genes and proteins. Genes have been indicated as mediators of the devel-

opment and function of networks involved in language processing and have been

shown to affect language abilities (Enard et al., 2002; Folia et al., 2011). Using neuro-

biological models in combination with in vitro models allows for the investigation

of how genes affect processing at the level of neural networks. This could be done

by using human stem cells to grow populations of neurons (Günlahar & Kuschner,

2016). The properties of these populations can then be recorded through synapse

staining (Ippolito & Eroglu, 2010) and calcium imaging of network activity (Chen

et al., 2013) which can be used to set the parameters in a neurobiological model of

sentence processing. Using this in silico model, structured sequence processing tasks

can be investigated with respect to the underlying genes that influenced the measured

neuronal and synaptic parameters. Comparing in silico models of genetically mutated

neuron populations (for example CNTNAP2 knock-outs, Folia et al., 2011) with the

in silico models of control populations can then identify the functional effect of a

language-related genetic mutation on the processing characteristics of the network.

Apart from these possibilities, neurobiological models can help to focus and

advance cognitive modeling efforts. If models of cognitive processes do not capture

experimentally measured behavior, this is due to abstractions made from biology,

suggesting that important features of the real system that generated this behavior are

missing. One such abstraction, for example, is the use of symbolic computations and

production rules where it is unclear how these mechanisms relate to the underlying

system. Neurobiological models also use abstractions from biophysical reality but the

relationship to the real biological system is more transparent. For instance, a point

neuron is abstracting away the dendritic tree but still does spike-based processing.

But if there are good reasons to believe that non-linear integration in dendrites

matters functionally, the neuron models can be augmented accordingly. Hence,

these abstractions can be investigated systematically to determine the cause for a

discrepancy between model behavior and experimentally observed behavior. If an

abstraction is identified as critical, neurobiology itself determines how to extend the

model in order to address this difference. This is in contrast to models that do not

implement biophysical constraints which can be extended arbitrarily. At some point,

neurobiological models will be detailed enough to capture most relevant properties
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of the language system because they are sufficiently close to the neural infrastructure

responsible for language processing.

Moreover, using biophysical models can facilitate scientific collaboration since

these models provide a common framework for addressing research questions in the

language sciences as well as other cognitive domains. Unless there is a substantial

revolution within our understanding of the brain's neurobiology, any neurobiological

model will reflect the properties I implemented or state how the implementation

abstracts away from them. It will reflect that the brain's computation is based on neu-

ral networks with spiking, adapting neurons that have fast synapses with extended

synaptic currents. Hence, neurobiological models addressing different questions in

the language sciences or other cognitive domains will have a common foundation.

This allows different disciplines to operate within the same constraint space, sharing

a common foundation. Different neurobiological models can naturally be compared

and related to each other, or be integrated to explore more complex behaviors. This

may allow for a gradual development of more explanatory models of human cognitive

capacities.

Final words
In this dissertation, I presented the notion of a neurobiological model and investigated

the properties of one specific instance, the NBL model. The insights gained from this

investigation illustrate the potential of this line of scientific research. I was able to

simulate a neural network based on insights from experimental data at the neuronal

level that could be used in the NBL model to solve cognitively relevant tasks in

language processing, such as semantic role labeling and binding query resolution.

I showed that neurobiological models can be used to establish causal relationships

between biophysical properties reflected in the model and the processing properties

it exhibits. Respecting the constraints on processing exerted by the properties of the

biological system can solve questions raised in models that implement less biophysical

constraints.

These results show that it is possible to harness detailed experimental insights

on the level of neurons and networks to improve our understanding of cortical

processes. Ultimately, the investigation and development of neurobiological models

will provide a deeper mechanistic understanding of cognitive processes based on the

behavior and interactions of neurons in networks.
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A.1 English summary
Studying the human brain and mind poses many unique challenges. One of them

is that different scientific rules and laws are suitable to describe the functioning of

different aspects of the brain on different levels of granularity. This is often not the

case in other sciences, for example, the apple falling from the tree is governed by

the same law as the earth revolving around the sun. The physics of water whirling

down a drain is not all that different from the way a hurricane works. In the brain,

however, the way two brain cells, two neurons, interact has very little to do with the

description of, for example, how humans form a sentence. And that is the case even

though we know for a fact that the interaction between neurons, when taking millions

and billions of them, is the exact thing that gives rise to us forming a sentence.

Over the last decades, the different levels of granularity of the brain have been

studied individually in detail. For example, there is a rich body of work describing and

investigating the properties of language or how syntax and semantics in a sentence

work. Furthermore, our understanding of the role that different brain areas play has

progressed significantly – today, we know that each part of the brain has its own

distinct role to play in our processing and, for example, that there is one brain area

dedicated to processing the syntax of sentences. Similarly, the study of the smallest

components of the brain, the brain's neurons, has made great progress in recent

decades. Through measuring, analyzing, and modeling neurons individually, we now

have a good understanding of how neurons work, how they communicate, and how

they respond to input. They are considered the underlying fabric of how the human

brain computes, uniting in themselves aspects of a computer's CPU and memory at

the same time.

However, there are still significant gaps in our understanding of how these

different levels of granularity interact. For example, how do our neurons store and

maintain the meaning and properties of words? How do they maintain informa-

tion over the time of a sentence and a conversation? How are sentences analyzed,

disassembled, and interpreted given the variety of different meanings that similar

sentences can have and the variety of similar meanings that very different sentences

can have?

In this doctoral thesis, I aim to contribute to filling in the gap of knowledge

between the smallest level, the neuron, and the highest level, in particular language.

For this, I study the behavior of the smallest biological unit, neurons, and how they

interact with each other in small and intermediate networks, while maintaining a
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conceptual connection to the level of the human brain as a whole, thinking about

how humans use and understand language. To do this, I applied a method that we

call neurobiological modeling. I simulated important properties of individual neurons,

which have been identified by neurobiology, in a computer simulation. I let neurons

interact in a small network of a few thousand exemplars and then I train them to solve

tasks that are relevant for linguistics. In the different chapters of this dissertation, I

used different tasks since they have different targets of study. For example, to study

memory properties, I fed a word into the network and tested after how much time

the information of this word was still retained. To study sentence processing, I input

a sentence like "The red cat chases the brown dog." and analyzed if it was possible

for the network to identify who was chasing, who was being chased, and what color

each of them was. I found that the neural network I was simulating is well suited to

solve these tasks. Since I used a computer simulation, instead of biological neurons, I

could freely manipulate it and analyze how exactly the task was solved. Through this,

I could study the mechanisms within neurons that give rise to a particular linguistic

computation. For example, I found that success in a short term memory task, i.e.

how the network remembers a word from the beginning of a sentence at the end of a

sentence, crucially depends on a neuronal property that is called spike rate adaptation.

When this was absent, the task was impossible to solve. Since the simulation was

done in a neurobiological model, meaning in a manner that is similar to the neurons

in our brain, one can conclude that spike rate adaptation must also be important for

our brain to maintain information during sentence processing. Through a similar

chain of arguments, I could show that processing sentences, dissecting their meaning,

and deciding if two sentences have a similar or different meaning, irrespective of

their syntactic structure, depends on a rich set of dynamical properties in each neuron.

These include spike rate adaptation but also, for example, how precisely the neurons

communicate with each other (i.e. the strength and shape of synaptic currents).

With the neurobiological models, my dissertation provides a specialized tool to

investigate our brain's computation on the level of neurons performing processing

tasks that are directly relevant for language processing. Ultimately, our brains are

exquisitely complex systems and processing not just of language depends on the

interactions between neurons but also the properties of the neurons itself, parts of

the neurons, and even individual molecules within them. Each element plays an

important role for our brains to successfully process information. And the only way

to understand our brain is to not just understand individual elements but how they

all work in unison.
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A.2 Nederlandse samenvatting
Het bestuderen van het menselijk brein en de geest brengt veel unieke uitdagingen

met zich mee. Een daarvan is dat op verschillende niveaus van granulariteit, verschil-

lende wetenschappelijke regels en wetten geschikt zijn om het te beschrijven. Dit is

in andere wetenschappen vaak niet het geval, de appel die van de boom valt, valt

bijvoorbeeld onder dezelfde wet als de aarde die om de zon draait. De fysica van

water dat door een afvoer wervelt, verschilt niet zo heel veel van de manier waarop

een orkaan werkt. In de hersenen heeft de manier waarop twee hersencellen, twee

neuronen, op elkaar inwerken echter weinig te maken met de beschrijving van bi-

jvoorbeeld hoe mensen een zin vormen. En dat is het geval, ook al weten we zeker dat

de interactie van die twee kleine neuronen, wanneer men er miljoenen en miljarden

van neemt, precies datgene is dat aanleiding geeft tot het vormen van een zin.

In de afgelopen decennia zijn de verschillende niveaus van granulariteit van

de hersenen op individuele basis in detail bestudeerd. Er is bijvoorbeeld een rijke

hoeveelheid werk dat de eigenschappen van talen beschrijft en onderzoekt, alsmede

hoe syntaxis en semantiek in een zin werken. Bovendien is ons begrip van de rol

die verschillende delen van onze hersenen spelen aanzienlijk verbeterd - vandaag

weten we dat elk deel van de hersenen zijn eigen specifieke rol te spelen heeft in

onze cognitie en, bijvoorbeeld, dat er één hersengebied is dat gespecialiseerd is in de

verwerking van de syntaxis van zinnen. Tegelijkertijd heeft de studie van de kleinste

componenten van de hersenen, de neuronen, de afgelopen decennia grote vooruitgang

geboekt. Door neuronen afzonderlijk te meten, te analyseren en te modelleren, hebben

we nu een goed begrip van hoe neuronen werken, hoe ze communiceren en hoe ze

reageren op input. Ze worden beschouwd als het onderliggende fundament van

hoe het menselijk brein informatie verwerkt, waarbij aspecten van het CPU en het

geheugen van een computer tegelijkertijd worden verenigd.

Er zijn echter nog steeds aanzienlijke hiaten in ons begrip van hoe deze ver-

schillende niveaus van granulariteit op elkaar inwerken. Hoe slaan onze neuronen

bijvoorbeeld de betekenis en eigenschappen van woorden op? Hoe behouden ze

deze informatie voor de duur van een zin of een gesprek? Hoe worden zinnen ge-

analyseerd, uit elkaar gehaald en geïnterpreteerd, gezien het feit dat vergelijkbare

zinnen verschillende betekenissen kunnen hebben en dat zeer verschillende zinnen

vergelijkbare betekenissen kunnen hebben?

In dit proefschrift wil ik bijdragen aan het dichten van de kenniskloof tussen

het kleinste niveau, het neuron en het hoogste niveau, in het bijzonder taal. Hiervoor

170 Appendix A Appendix



bestudeer ik het gedrag van de kleinste biologische eenheid, het neuron, en hoe

ze met elkaar omgaan in netwerken met een kleine tot gemiddelde grootte, terwijl

ik een conceptuele verbinding met het niveau van het menselijk brein als geheel

behoud, denkend aan hoe mensen taal gebruiken en begrijpen. Om dit te doen, heb

ik een methode toegepast die we neurobiologisch modelleren noemen. Ik simuleerde

belangrijke eigenschappen van individuele neuronen, die door neurobiologie zijn

geïdentificeerd, in een computersimulatie. Ik laat neuronen samenwerken in een

klein netwerk van een paar duizend exemplaren en daarna train ik ze om taken op te

lossen die relevant zijn voor de taalkunde. In de verschillende hoofdstukken van dit

proefschrift heb ik verschillende taken gebruikt, elk met een ander studiedoel. Om

bijvoorbeeld de eigenschappen van het geheugen te bestuderen, voer ik een woord

in het netwerk in en test ik na hoeveel tijd de informatie van dit woord nog wordt

bewaard. Om de verwerking van zinnen te bestuderen, voer ik een zin in als "De

rode kat jaagt op de bruine hond." en analyseren of het mogelijk is voor het netwerk

om te bepalen wie er achterna zit, wie er wordt achtervolgd en welke kleur elk van

hen heeft. Ik ontdekte dat het neurale netwerk dat ik simuleerde, zeer geschikt is om

deze taken op te lossen. Omdat ik een computersimulatie gebruikte, in plaats van

biologische neuronen, kon ik ze vrijelijk manipuleren en kon ik analyseren hoe de taak

precies was opgelost. Hierdoor kon ik het mechanisme in het neuron bestuderen dat

aanleiding geeft tot een bepaalde taalkundige computatie. Ik ontdekte bijvoorbeeld

dat succes bij een korte-termijn geheugentaak, d.w.z. hoe het een woord uit het begin

van een zin onthoudt aan het einde van een zin, cruciaal afhangt van een neuronale

eigenschap die spike rate adaptation wordt genoemd. Als dit afwezig was, was de taak

niet op te lossen. Aangezien de simulatie werd uitgevoerd in een neurobiologisch

model, dat wil zeggen op een manier die vergelijkbaar is met de neuronen in onze

hersenen, kan worden geconcludeerd dat aanpassing van de spike rate adaptation

ook belangrijk moet zijn voor onze hersenen om informatie te behouden tijdens het

verwerken van zinnen. Door een soortgelijke reeks argumenten kon ik aantonen dat

het verwerken van zinnen afhangt van een rijke reeks dynamische eigenschappen

in elk neuron. Dit omvat aanpassing van de piekfrequentie, maar bijvoorbeeld ook

hoe neuronen precies met elkaar communiceren (d.w.z. de sterkte en vorm van

synaptische stroom).

Mijn proefschrift biedt met de neurobiologische modellen een gespecialiseerd

hulpmiddel om de berekeningen van onze hersenen te onderzoeken op het niveau

van neuronen die verwerkingstaken uitvoeren die direct relevant zijn voor taalver-

werking. Uiteindelijk zijn onze hersenen buitengewoon complexe machines en de
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verwerking van niet alleen taal hangt af van de interacties tussen neuronen maar

ook van de eigenschappen van de neuronen zelf, delen van de neuronen en zelfs

individuele moleculen erin. Elk element speelt een belangrijke rol voor onze hersenen

om informatie succesvol te verwerken. En de enige manier om ons brein te begrijpen,

is door niet alleen individuele elementen te begrijpen, maar ook hoe ze allemaal

samenwerken.

Translated by Rowan Sommers

A.3 Deutsche Zusammenfassung
Beim Studium des menschlichen Gehirns stellen sich viele einzigartige Heraus-

forderungen. Eine davon ist, dass für verschiedene Aspekte und für eine unter-

schiedliche Detailtiefe der Beschreibung, unterschiedliche wissenschaftliche Regeln

und Modelle notwendig sind. Dies ist in anderen Wissenschaften oft nicht der Fall,

zum Beispiel unterliegt der Apfel der vom Baum fällt demselben Gesetz wie die Erde,

die sich um die Sonne dreht. Die Physik des Wassers, das einen Abfluss hinunter-

wirbelt, unterscheidet sich nicht wesentlich von der Funktionsweise eines Hurrikans.

Im Gegensatz dazu hat die Art und Weise, wie im Gehirn zwei Gehirnzellen inter-

agieren, relativ wenig mit unserem Verständnis davon zu tun, wie beispielsweise

Menschen einen Satz bilden. Das ist jedoch der Fall, obwohl wir sicher wissen, dass

die Interaktion einzelner Neuronen, wenn man Millionen und Milliarden von ihnen

nimmt, genau das ist, was dazu führt, dass wir überhaupt einen Satz bilden können.

In den letzten Jahrzehnten wurden verschiedene Aspekte des Gehirns unab-

hängig voneinander erforscht. Zum Beispiel wurde sehr genau untersucht, wie

Sprache funktioniert und wie z. B. Syntax und Semantik in einem Satz interagieren.

Darüber hinaus haben wir heute ein gutes Verständnis davon, welche Rolle ver-

schiedene Areale unseres Gehirns spielen. Wir wissen, dass jeder Teil des Gehirns

eine eigene Rolle bei der Verarbeitung von Informationen spielt und dass es beispiel-

sweise ein Areal gibt, das der Verarbeitung der Syntax in einem Satz gewidmet ist.

Gleichzeitig hat die Untersuchung der kleinsten Bestandteile des Gehirns, der Neuro-

nen, in den letzten Jahrzehnten große Fortschritte gemacht. Durch das individuelle

Messen, Analysieren und Modellieren von Neuronen haben wir heute ein gutes Ver-

ständnis davon, wie Neuronen funktionieren, wie sie kommunizieren und wie sie auf

Input reagieren. Sie gelten als die Grundlage für die Informationsverarbeitung des

menschlichen Gehirns und vereinen Eigenschaften sowohl von Computerprozessoren

als auch von Arbeitsspeichern.
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Es gibt jedoch immer noch erhebliche Lücken in unserem Verständnis, wie diese

verschiedenen Aspekte interagieren. Wie speichern unsere Neuronen beispielsweise

die Bedeutung und Eigenschaften von Wörtern? Wie behalten sie Informationen über

die Dauer eines Satzes und eines Gesprächs? Wie werden Sätze analysiert, zerlegt

und interpretiert? Und wie können ähnliche Sätze, eine Vielfalt unterschiedlicher

Bedeutungen haben können, und sehr unterschiedliche Sätze, die viele ähnlichen

Bedeutungen haben können, korrekt interpretiert?

Mit dieser Doktorarbeit möchte ich dazu beitragen, die Wissenslücke zwischen

detaillierten und abstrakteren Betrachtungsweisen, insbesondere von Neuronen und

Sprache, zu schließen. Dazu untersuche ich das Verhalten der kleinsten biologis-

chen Einheiten, der Neuronen, und wie sie in kleinen und mittleren Netzwerken

miteinander interagieren. Gleichzeitig halte ich eine konzeptionelle Verbindung zur

Ebene des menschlichen Gehirns als Ganzes aufrecht und betrachte wie Menschen

Sprache verwenden und verstehen. Dazu habe ich eine Methode angewandt, die wir

neurobiologische Modellierung nennen. In einer Computersimulation habe ich wichtige

Eigenschaften einzelner Neuronen simuliert, die in der Neurobiologie identifiziert

wurden. Ich lasse Neuronen in einem kleinen Netzwerk von einigen tausend Exem-

plaren interagieren und trainiere sie dann darauf, bestimmte Aufgaben zu lösen, die

für die Linguistik relevant sind. In den einzelnen Kapiteln dieser Dissertation habe

ich verschiedene Aufgaben verwendet, da es unterschiedliche Untersuchungsziele

gibt. Um beispielsweise die Gedächtniseigenschaften zu untersuchen, gebe ich ein

Wort in dieses Netzwerk ein und teste, wie lange die Informationen dieses Wortes

noch verfügbar sind. Um die Satzverarbeitung zu studieren, sende ich einen Satz

wie "Die rote Katze jagt den braunen Hund.", um zu analysieren, ob es dem Net-

zwerk möglich ist zu identifizieren, wer jagt, beziehungsweise wer gejagt wird und

welche Farbe jeder von ihnen hat. Ich fand heraus, dass das neuronale Netzwerk,

das ich simulierte, gut geeignet ist, diese Aufgaben zu lösen. Da ich anstelle von

biologischen Neuronen eine Computersimulation verwendet habe, konnte ich sie

flexibel manipulieren und analysieren, wie die Aufgabe im Detail gelöst wurde.

Dadurch konnte ich den Mechanismus innerhalb der Neuronen untersuchen, der

zu einer bestimmten sprachlichen Verarbeitung führt. Ich fand ich heraus, dass der

Erfolg einer Kurzzeitgedächtnisaufgabe, d. h. wie das Netzwerk sich an ein Wort

vom Anfang eines Satzes am Ende dieses Satzes erinnert, entscheidend von einer

neuronalen Eigenschaft abhängt, die als Feuerratenadaption bezeichnet wird. Wenn

diese nicht vorhanden war, konnte die Aufgabe nicht gelöst werden. Die Simulation

wurde in einem neurobiologischen Modell durchgeführt, also in einer Weise, die
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der Funktionsweise der Neuronen in unserem Gehirn ähnlich ist. Daher kann man

daraus schließen, dass die Feuerratenadaption auch wichtig sein muss, damit unser

Gehirn Informationen während der Satzverarbeitung behält. Durch eine ähnliche

Argumentationskette konnte ich zeigen, dass die Verarbeitung von Sätzen, die Anal-

yse ihrer Bedeutung und die Entscheidung, ob zwei Sätze unabhängig von ihrer

syntaktischen Struktur eine ähnliche oder unterschiedliche Bedeutung haben, von

einer Vielzahl dynamischer Eigenschaften in jedem Neuron abhängt. Dies umfasst

die Feuerratenadaption, aber auch beispielsweise, wie genau Neuronen miteinander

kommunizieren (d. h. die Stärke und Form von synaptischen Strömen).

Meine Dissertation bietet mit den neurobiologischen Modellen ein passendes

Werkzeug, um zu untersuchen, wie unser Gehirn auf der Ebene von Neuronen

Informationen in einer Art verarbeitet, die direkt für Sprachverarbeitung relevant ist.

Letztendlich ist unser Gehirn ein äußerst komplexes System und die Verarbeitung

nicht nur der Sprache hängt von den Interaktionen zwischen Neuronen ab, aber

auch von den Eigenschaften der Neuronen selbst, Teilen der Neuronen und sogar

einzelner Moleküle in ihnen. Jede Einheit spielt eine wichtige Rolle für unser Gehirn,

um Informationen erfolgreich zu verarbeiten. Der einzige Weg, unser Gehirn zu

verstehen, besteht darin, nicht nur einzelne Elemente zu verstehen, sondern auch wie

sie alle zusammenarbeiten.
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